Uniqueness sets of positive measure for the trigonometric system
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1179-1203.

Voir la notice de l'article provenant de la source Math-Net.Ru

There exists a family $\mathcal{B}$ of one-to-one mappings $B \colon \mathbb{Z}\to\mathbb{Z}$ satisfying the condition $B(-n) \equiv -B(n)$ such that for each $B \in \mathcal{B}$ there exists a perfect uniqueness set of positive measure for the $B$-rearranged trigonometric system $\{\exp(iB(n)x)\}$. For a certain wider class of rearrangements of the trigonometric system, the strengthened assertion holds from the Stechkin–Ul'yanov conjecture.
Keywords: trigonometric system, Fourier series, sets of uniqueness, $V$-sets.
@article{IM2_2022_86_6_a7,
     author = {M. G. Plotnikov},
     title = {Uniqueness sets of positive measure for the trigonometric system},
     journal = {Izvestiya. Mathematics },
     pages = {1179--1203},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Uniqueness sets of positive measure for the trigonometric system
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1179
EP  - 1203
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/
LA  - en
ID  - IM2_2022_86_6_a7
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Uniqueness sets of positive measure for the trigonometric system
%J Izvestiya. Mathematics 
%D 2022
%P 1179-1203
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/
%G en
%F IM2_2022_86_6_a7
M. G. Plotnikov. Uniqueness sets of positive measure for the trigonometric system. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1179-1203. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/

[1] G. Cantor, Works in set theory, Transl. from the German, Classics of Science, Nauka, Moscow, 1985 | MR | Zbl

[2] A. S. Kechris and A. Louveau, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., 128, Cambridge Univ. Press, Cambridge, 1987 | DOI | MR | Zbl

[3] R. Cooke, “Uniqueness of trigonometric series and descriptive set theory, 1870–1985”, Arch. Hist. Exact Sci., 45:4 (1993), 281–334 | DOI | MR | Zbl

[4] A. Zygmund, Trigonometric series, v. I, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2002 ; Russian transl. of 1st ed. v. I, Mir, Moscow, 1965 | MR | Zbl | MR | Zbl

[5] N. K. Bary, A treatise on trigonometric series, Fizmatgiz, Moscow, 1961 ; English transl. v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964 | MR | MR | Zbl

[6] N. N. Kholshchevnikova, “On the de la Vallé-Poussin theorem on the uniqueness of the trigonometric series representing a function”, Mat. Sb., 187:5 (1996), 143–160 ; English transl. Sb. Math., 187:5 (1996), 767–784 | DOI | MR | Zbl | DOI

[7] J.-P. Kahane and Y. Katznelson, “Sur les ensembles d'unicité $U(\varepsilon)$ de Zygmund”, C. R. Acad. Sci. Paris Sér. A-B, 277 (1973), A893–A895 | MR | Zbl

[8] M. G. Plotnikov, “Recovery of integrable functions and trigonometric series”, Mat. Sb., 212:6 (2021), 109–125 ; English transl. Sb. Math., 212:6 (2021), 843–858 | DOI | MR | Zbl | DOI

[9] S. B. Stechkin and P. L. Ul'yanov, “On sets of uniqueness”, Izv. Akad. Nauk SSSR Ser. Mat., 26:2 (1962), 211–222 | MR | Zbl

[10] J. E. Coury, “Some results on lacunary Walsh series”, Pacific J. Math., 45:2 (1973), 419–425 | DOI | MR | Zbl

[11] S. F. Lukomskiĭ, “Necessary conditions for sets of uniqueness of Walsh series with gaps”, Mat. Sb., 133(175):4(8) (1987), 469–480 ; English transl. Sb. Math., 61:2 (1988), 461–470 | MR | Zbl | DOI

[12] S. V. Astashkin and R. S. Sukhanov, “On certain properties of Rademacher chaos”, Mat. Zametki, 91:5 (2012), 654–666 ; English transl. Math. Notes, 91:5 (2012), 613–624 | DOI | MR | Zbl | DOI

[13] M. Plotnikov, “On the Vilenkin–Chrestenson systems and their rearrangements”, J. Math. Anal. Appl., 492:1 (2020), 124391 | DOI | MR | Zbl

[14] G. Kozma and A. M. Olevskiĭ, “Cantor uniqueness and multiplicity along subsequences”, Algebra i Analiz, 32:2 (2021), 85–106 (English) ; St. Petersburg Math. J., 32:2 (2021), 261–277 | MR | Zbl | DOI

[15] P. L. Ul'yanov, “Solved and unsolved problems in the theory of trigonometric and orthogonal series”, Uspekhi Mat. Nauk, 19:1(115) (1964), 3–69 ; English transl. Russian Math. Surveys, 19:1 (1964), 1–62 | MR | DOI | Zbl

[16] G. G. Gevorkyan, “Uniqueness theorems for simple trigonometric series with application to multiple series”, Mat. Sb., 212:12 (2021), 20–39 ; English transl. Sb. Math., 212:12 (2021), 1675–1693 | DOI | MR | Zbl | DOI

[17] N. Kholshchevnikova and V. Skvortsov, “On $U$- and $M$-sets for series with respect to characters of compact zero-dimensional groups”, J. Math. Anal. Appl., 446:1 (2017), 383–394 | DOI | MR | Zbl

[18] N. Kholshchevnikova, “The union problem and the category problem of sets of uniqueness in the theory of orthogonal series”, Real Anal. Exchange, 44:1 (2019), 65–76 | DOI | MR | Zbl

[19] S. F. Lukomskii, “On the uniqueness sets of multiple Walsh series for convergence in cubes”, Mat. Zametki, 109:3 (2021), 397–406 ; English transl. Math. Notes, 109:3 (2021), 427–434 | DOI | MR | Zbl | DOI

[20] G. G. Gevorkyan, “Uniqueness theorems for one-dimensional and double Franklin series”, Izv. Ross. Akad. Nauk Ser. Mat., 84:5 (2020), 3–19 ; English transl. Izv. Math., 84:5 (2020), 829–844 | DOI | MR | Zbl | DOI

[21] G. G. Gevorkyan and L. A. Hakobyan, “Uniqueness theorems for multiple Franklin series converging over rectangles”, Mat. Zametki, 109:2 (2021), 206–218 ; English transl. Math. Notes, 109:2 (2021), 208–217 | DOI | MR | Zbl | DOI

[22] G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Mat. Sb., 209:6 (2018), 25–46 ; English transl. Sb. Math., 209:6 (2018), 802–822 | DOI | MR | Zbl | DOI

[23] V. Skvortsov, “Recovering Banach-valued coefficients of series with respect to characters of zero-dimensional groups”, Ann. Univ. Sci. Budapest. Sect. Comput., 49 (2019), 379–397 | MR | Zbl

[24] M. Plotnikov, “$\mathcal V$-sets in the products of zero-dimensional compact abelian groups”, Eur. J. Math., 5:1 (2019), 223–240 | DOI | MR | Zbl

[25] V. A. Skvortsov, “Reconstruction of a generalized Fourier series from its sum on a compact zero-dimensional group in the non-abelian case”, Mat. Zametki, 109:4 (2021), 616–624 ; English transl. Math. Notes, 109:4 (2021), 630–637 | DOI | MR | Zbl | DOI

[26] J. M. Ash and Gang Wang, “Uniqueness questions for multiple trigonometric series”, Topics in harmonic analysis and ergodic theory, Contemp. Math., 444, Amer. Math. Soc., Providence, RI, 2007, 129–165 | DOI | MR | Zbl

[27] J. O. Smith III, Mathematics of the Discrete Fourier Transform (DFT), with audio applications, 2 ed., W3K Publishing, 2007

[28] I. W. Selesnick and G. Schuller, “The discrete Fourier transform”, The transform and data compression textbook, Ch. 2, CRC Press LLC, Boca Raton, FL, 2001, 37–79

[29] N. M. Korobov, Exponential sums and their applications, Nauka, Moscow, 1989 ; English transl. Math. Appl. (Soviet Ser.), 80, Kluwer Acad. Publ., Dordrecht, 1992 | MR | Zbl | DOI | MR | Zbl

[30] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta. Math., 116 (1966), 135–157 | DOI | MR | Zbl

[31] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues (Edwardsville, IL 1967), Southern Illinois Univ. Press, Carbondale, IL, 1968, 235–255 | MR | Zbl

[32] P. Sjölin, “An inequality of Paley and convergence a.e. of Walsh–Fourier series”, Ark. Mat., 7:6 (1969), 551–570 | DOI | MR | Zbl

[33] N. Yu. Antonov, “Convergence of Fourier series”, East J. Approx., 2:2 (1996), 187–196 | MR | Zbl

[34] P. L. Ul'yanov, “On series in a permuted trigonometric system”, Izv. Akad. Nauk SSSR Ser. Mat., 22:4 (1958), 515–542 | MR | Zbl

[35] J. M. Ash and Sh. T. Tetunashvili, “Uniqueness for multiple trigonometric and Walsh series with convergent rearranged square partial sums”, Proc. Amer. Math. Soc., 134:6 (2006), 1681–1686 | DOI | MR | Zbl

[36] J. M. Ash, C. Freiling, and D. Rinne, “Uniqueness of rectangularly convergent trigonometric series”, Ann. of Math. (2), 137:1 (1993), 145–166 | DOI | MR | Zbl

[37] N. N. Kholshchevnikova, “Union of sets of uniqueness for multiple Walsh and multiple trigonometric series”, Mat. Sb., 193:4 (2002), 135–160 ; English transl. Sb. Math., 193:4 (2002), 609–633 | DOI | MR | Zbl | DOI

[38] Sh. T. Tetunashvili, “On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Mat. Sb., 182:8 (1991), 1158–1176 ; English transl. Sb. Math., 73:2 (1992), 517–534 | MR | Zbl | DOI

[39] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Ross. Akad. Nauk Ser. Mat., 72:2 (2008), 83–90 ; English transl. Izv. Math., 72:2 (2008), 283–290 | DOI | MR | Zbl | DOI

[40] T. A. Zhereb'eva, “On a class of sets of uniqueness for double trigonometric series”, Mat. Zametki, 87:6 (2010), 830–839 ; English transl. Math. Notes, 87:6 (2010), 811–820 | DOI | MR | Zbl | DOI

[41] J. Bourgain, “Spherical summation and uniqueness of multiple trigonometric series”, Internat. Math. Res. Notices, 1996:3 (1996), 93–107 | DOI | MR | Zbl