Uniqueness sets of positive measure for the trigonometric system
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1179-1203

Voir la notice de l'article provenant de la source Math-Net.Ru

There exists a family $\mathcal{B}$ of one-to-one mappings $B \colon \mathbb{Z}\to\mathbb{Z}$ satisfying the condition $B(-n) \equiv -B(n)$ such that for each $B \in \mathcal{B}$ there exists a perfect uniqueness set of positive measure for the $B$-rearranged trigonometric system $\{\exp(iB(n)x)\}$. For a certain wider class of rearrangements of the trigonometric system, the strengthened assertion holds from the Stechkin–Ul'yanov conjecture.
Keywords: trigonometric system, Fourier series, sets of uniqueness, $V$-sets.
@article{IM2_2022_86_6_a7,
     author = {M. G. Plotnikov},
     title = {Uniqueness sets of positive measure for the trigonometric system},
     journal = {Izvestiya. Mathematics },
     pages = {1179--1203},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Uniqueness sets of positive measure for the trigonometric system
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1179
EP  - 1203
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/
LA  - en
ID  - IM2_2022_86_6_a7
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Uniqueness sets of positive measure for the trigonometric system
%J Izvestiya. Mathematics 
%D 2022
%P 1179-1203
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/
%G en
%F IM2_2022_86_6_a7
M. G. Plotnikov. Uniqueness sets of positive measure for the trigonometric system. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1179-1203. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a7/