Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_6_a6, author = {V. N. Pavlenko and D. K. Potapov}, title = {One class of quasilinear elliptic type equations with discontinuous nonlinearities}, journal = {Izvestiya. Mathematics }, pages = {1162--1178}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/} }
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - One class of quasilinear elliptic type equations with discontinuous nonlinearities JO - Izvestiya. Mathematics PY - 2022 SP - 1162 EP - 1178 VL - 86 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/ LA - en ID - IM2_2022_86_6_a6 ER -
V. N. Pavlenko; D. K. Potapov. One class of quasilinear elliptic type equations with discontinuous nonlinearities. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1162-1178. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/
[1] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 ; Russian transl. Nauka, Moscow, 1989 | DOI | MR | Zbl | MR | Zbl
[2] M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with hysteresis, Nauka, Moscow, 1983 ; English transl. Springer-Verlag, Berlin, 1989 | MR | Zbl | DOI | MR | Zbl
[3] H. J. Kuiper, “On positive solutions of nonlinear elliptic eigenvalue problems”, Rend. Circ. Mat. Palermo (2), 20:2-3 (1971), 113–138 | DOI | MR | Zbl
[4] M. A. Krasnosel'skii and A. V. Pokrovskii, “Regular solutions of equations with discontinuous nonlinearities”, Dokl. Akad. Nauk SSSR, 226:3 (1976), 506–509 ; English transl. Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl
[5] V. N. Pavlenko and D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Mat. Sb., 206:9 (2015), 121–138 ; English transl. Sb. Math., 206:9 (2015), 1281–1298 | DOI | MR | Zbl | DOI
[6] V. N. Pavlenko and D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Matem. Tr., 19:1 (2016), 91–105 ; English transl. Siberian Adv. Math., 27:1 (2017), 16–25 | DOI | MR | Zbl | DOI
[7] V. N. Pavlenko and D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Mat. Sb., 208:1 (2017), 165–182 ; English transl. Sb. Math., 208:1 (2017), 157–172 | DOI | MR | Zbl | DOI
[8] V. N. Pavlenko and D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Mat. Zametki, 101:2 (2017), 247–261 ; English transl. Math. Notes, 101:2 (2017), 284–296 | DOI | MR | Zbl | DOI
[9] V. N. Pavlenko and D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Sibirsk. Mat. Zh., 58:2 (2017), 375–385 ; English transl. Siberian Math. J., 58:2 (2017), 288–295 | DOI | MR | Zbl | DOI
[10] V. N. Pavlenko and D. K. Potapov, “Elenbaas problem of electric arc discharge”, Mat. Zametki, 103:1 (2018), 92–100 ; English transl. Math. Notes, 103:1 (2018), 89–95 | DOI | MR | Zbl | DOI
[11] V. N. Pavlenko and D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Mat. Sb., 210:7 (2019), 145–170 ; English transl. Sb. Math., 210:7 (2019), 1043–1066 | DOI | MR | Zbl | DOI
[12] V. N. Pavlenko and D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Ross. Akad. Nauk Ser. Mat., 84:3 (2020), 168–184 ; English transl. Izv. Math., 84:3 (2020), 592–607 | DOI | MR | Zbl | DOI
[13] V. N. Pavlenko and D. K. Potapov, “On the existence of three nontrivial solutions of a resonance elliptic boundary value problem with a discontinuous nonlinearity”, Differ. Uravn., 56:7 (2020), 861–871 ; English transl. Differ. Equ., 56:7 (2020), 831–841 | DOI | MR | Zbl | DOI
[14] V. N. Pavlenko and D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Ross. Akad. Nauk Ser. Mat., 85:2 (2021), 95–112 ; English transl. Izv. Math., 85:2 (2021), 262–278 | DOI | MR | Zbl | DOI
[15] V. N. Pavlenko and D. K. Potapov, “Variational method for elliptic systems with discontinuous nonlinearities”, Mat. Sb., 212:5 (2021), 133–152 ; English transl. Sb. Math., 212:5 (2021), 726–744 | DOI | MR | Zbl | DOI
[16] V. N. Pavlenko and D. K. Potapov, “Existence of semiregular solutions of elliptic systems with discontinuous nonlinearities”, Mat. Zametki, 110:2 (2021), 239–257 ; English transl. Math. Notes, 110:2 (2021), 226–241 | DOI | MR | Zbl | DOI
[17] H. J. Kuiper, “Eigenvalue problems for noncontinuous operators associated with quasilinear elliptic equations”, Arch. Ration. Mech. Anal., 53:2 (1974), 178–186 | DOI | MR | Zbl
[18] I. V. Shragin, “Conditions for measurability of superpositions”, Dokl. Akad. Nauk SSSR, 197:2 (1971), 295–298 ; English transl. Soviet Math. Dokl., 12 (1971), 465–470 | MR | Zbl
[19] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, Fizmatgiz, Moscow, 1962 (Russian) ; English transl. P. Noordhoff Ltd., Groningen, 1964 | MR | Zbl | MR | Zbl
[20] Kung-ching Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl
[21] S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd revised and augmented ed., Nauka, Moscow, 1988 ; English transl. Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | DOI | MR | Zbl
[22] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, 2nd ed., Nauka, Moscow, 1973 ; English transl. of 1st ed. Academic Press, New York–London, 1968 | MR | Zbl | MR | Zbl
[23] V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrain. Mat. Zh., 46:6 (1994), 729–736 (Russian) ; English transl. V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 | Zbl | DOI | MR
[24] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the theory of multivalued mappings and differential inclusions, 2nd revised and augmented ed., Librokom, Moscow, 2011 (Russian) | MR | Zbl
[25] H. J. Kuiper and W. R. Derrick, “Nonlinear ordinary and functional Sturm–Liouville problems”, Indiana Univ. Math. J., 25:2 (1976), 179–190 | DOI | MR | Zbl
[26] J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York–London–Paris, 1969 | MR | Zbl