One class of quasilinear elliptic type equations with discontinuous nonlinearities
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1162-1178.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded domain $\Omega\subset \mathbb{R}^n$, a class of quasilinear elliptic type boundary problems with parameter and discontinuous nonlinearity is studied. This class of problems includes the H. J. Kuiper conductor heating problem in a homogeneous electric field. The topological method is applied to verify the existence of a continuum of generalized positive solutions from the Sobolev space $W_p^2(\Omega)$ ($p>n$) connecting $(0,0)$ with $\infty$ in the space $\mathbb R\times C^{1,\alpha}(\overline\Omega)$, $\alpha\in (0,(p-n)/p)$. A sufficient condition for semiregularity of generalized solutions of this problem is given. The constraints on the discontinuous nonlinearity are relaxed in comparison with those used by H. J. Kuiper and K. C. Chang.
Keywords: quasilinear elliptic type equation, parameter, discontinuous nonlinearity, continuum of positive solutions, semiregular solution, topological method.
@article{IM2_2022_86_6_a6,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {One class of quasilinear elliptic type equations with discontinuous nonlinearities},
     journal = {Izvestiya. Mathematics },
     pages = {1162--1178},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - One class of quasilinear elliptic type equations with discontinuous nonlinearities
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1162
EP  - 1178
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/
LA  - en
ID  - IM2_2022_86_6_a6
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T One class of quasilinear elliptic type equations with discontinuous nonlinearities
%J Izvestiya. Mathematics 
%D 2022
%P 1162-1178
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/
%G en
%F IM2_2022_86_6_a6
V. N. Pavlenko; D. K. Potapov. One class of quasilinear elliptic type equations with discontinuous nonlinearities. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1162-1178. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/

[1] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 ; Russian transl. Nauka, Moscow, 1989 | DOI | MR | Zbl | MR | Zbl

[2] M. A. Krasnosel'skiĭ and A. V. Pokrovskiĭ, Systems with hysteresis, Nauka, Moscow, 1983 ; English transl. Springer-Verlag, Berlin, 1989 | MR | Zbl | DOI | MR | Zbl

[3] H. J. Kuiper, “On positive solutions of nonlinear elliptic eigenvalue problems”, Rend. Circ. Mat. Palermo (2), 20:2-3 (1971), 113–138 | DOI | MR | Zbl

[4] M. A. Krasnosel'skii and A. V. Pokrovskii, “Regular solutions of equations with discontinuous nonlinearities”, Dokl. Akad. Nauk SSSR, 226:3 (1976), 506–509 ; English transl. Soviet Math. Dokl., 17:1 (1976), 128–132 | MR | Zbl

[5] V. N. Pavlenko and D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Mat. Sb., 206:9 (2015), 121–138 ; English transl. Sb. Math., 206:9 (2015), 1281–1298 | DOI | MR | Zbl | DOI

[6] V. N. Pavlenko and D. K. Potapov, “Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity”, Matem. Tr., 19:1 (2016), 91–105 ; English transl. Siberian Adv. Math., 27:1 (2017), 16–25 | DOI | MR | Zbl | DOI

[7] V. N. Pavlenko and D. K. Potapov, “Existence of two nontrivial solutions for sufficiently large values of the spectral parameter in eigenvalue problems for equations with discontinuous right-hand sides”, Mat. Sb., 208:1 (2017), 165–182 ; English transl. Sb. Math., 208:1 (2017), 157–172 | DOI | MR | Zbl | DOI

[8] V. N. Pavlenko and D. K. Potapov, “Existence of three nontrivial solutions of an elliptic boundary-value problem with discontinuous nonlinearity in the case of strong resonance”, Mat. Zametki, 101:2 (2017), 247–261 ; English transl. Math. Notes, 101:2 (2017), 284–296 | DOI | MR | Zbl | DOI

[9] V. N. Pavlenko and D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Sibirsk. Mat. Zh., 58:2 (2017), 375–385 ; English transl. Siberian Math. J., 58:2 (2017), 288–295 | DOI | MR | Zbl | DOI

[10] V. N. Pavlenko and D. K. Potapov, “Elenbaas problem of electric arc discharge”, Mat. Zametki, 103:1 (2018), 92–100 ; English transl. Math. Notes, 103:1 (2018), 89–95 | DOI | MR | Zbl | DOI

[11] V. N. Pavlenko and D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Mat. Sb., 210:7 (2019), 145–170 ; English transl. Sb. Math., 210:7 (2019), 1043–1066 | DOI | MR | Zbl | DOI

[12] V. N. Pavlenko and D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Ross. Akad. Nauk Ser. Mat., 84:3 (2020), 168–184 ; English transl. Izv. Math., 84:3 (2020), 592–607 | DOI | MR | Zbl | DOI

[13] V. N. Pavlenko and D. K. Potapov, “On the existence of three nontrivial solutions of a resonance elliptic boundary value problem with a discontinuous nonlinearity”, Differ. Uravn., 56:7 (2020), 861–871 ; English transl. Differ. Equ., 56:7 (2020), 831–841 | DOI | MR | Zbl | DOI

[14] V. N. Pavlenko and D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Ross. Akad. Nauk Ser. Mat., 85:2 (2021), 95–112 ; English transl. Izv. Math., 85:2 (2021), 262–278 | DOI | MR | Zbl | DOI

[15] V. N. Pavlenko and D. K. Potapov, “Variational method for elliptic systems with discontinuous nonlinearities”, Mat. Sb., 212:5 (2021), 133–152 ; English transl. Sb. Math., 212:5 (2021), 726–744 | DOI | MR | Zbl | DOI

[16] V. N. Pavlenko and D. K. Potapov, “Existence of semiregular solutions of elliptic systems with discontinuous nonlinearities”, Mat. Zametki, 110:2 (2021), 239–257 ; English transl. Math. Notes, 110:2 (2021), 226–241 | DOI | MR | Zbl | DOI

[17] H. J. Kuiper, “Eigenvalue problems for noncontinuous operators associated with quasilinear elliptic equations”, Arch. Ration. Mech. Anal., 53:2 (1974), 178–186 | DOI | MR | Zbl

[18] I. V. Shragin, “Conditions for measurability of superpositions”, Dokl. Akad. Nauk SSSR, 197:2 (1971), 295–298 ; English transl. Soviet Math. Dokl., 12 (1971), 465–470 | MR | Zbl

[19] M. A. Krasnosel'skiĭ, Positive solutions of operator equations, Fizmatgiz, Moscow, 1962 (Russian) ; English transl. P. Noordhoff Ltd., Groningen, 1964 | MR | Zbl | MR | Zbl

[20] Kung-ching Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl

[21] S. L. Sobolev, Some applications of functional analysis in mathematical physics, 3rd revised and augmented ed., Nauka, Moscow, 1988 ; English transl. Transl. Math. Monogr., 90, Amer. Math. Soc., Providence, RI, 1991 | MR | Zbl | DOI | MR | Zbl

[22] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, 2nd ed., Nauka, Moscow, 1973 ; English transl. of 1st ed. Academic Press, New York–London, 1968 | MR | Zbl | MR | Zbl

[23] V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrain. Mat. Zh., 46:6 (1994), 729–736 (Russian) ; English transl. V. N. Pavlenko, “Control of singular distributed parabolic systems with discontinuous nonlinearities”, Ukrainian Math. J., 46:6 (1994), 790–798 | Zbl | DOI | MR

[24] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, and V. V. Obukhovskii, Introduction to the theory of multivalued mappings and differential inclusions, 2nd revised and augmented ed., Librokom, Moscow, 2011 (Russian) | MR | Zbl

[25] H. J. Kuiper and W. R. Derrick, “Nonlinear ordinary and functional Sturm–Liouville problems”, Indiana Univ. Math. J., 25:2 (1976), 179–190 | DOI | MR | Zbl

[26] J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York–London–Paris, 1969 | MR | Zbl