One class of quasilinear elliptic type equations with discontinuous nonlinearities
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1162-1178

Voir la notice de l'article provenant de la source Math-Net.Ru

In a bounded domain $\Omega\subset \mathbb{R}^n$, a class of quasilinear elliptic type boundary problems with parameter and discontinuous nonlinearity is studied. This class of problems includes the H. J. Kuiper conductor heating problem in a homogeneous electric field. The topological method is applied to verify the existence of a continuum of generalized positive solutions from the Sobolev space $W_p^2(\Omega)$ ($p>n$) connecting $(0,0)$ with $\infty$ in the space $\mathbb R\times C^{1,\alpha}(\overline\Omega)$, $\alpha\in (0,(p-n)/p)$. A sufficient condition for semiregularity of generalized solutions of this problem is given. The constraints on the discontinuous nonlinearity are relaxed in comparison with those used by H. J. Kuiper and K. C. Chang.
Keywords: quasilinear elliptic type equation, parameter, discontinuous nonlinearity, continuum of positive solutions, semiregular solution, topological method.
@article{IM2_2022_86_6_a6,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {One class of quasilinear elliptic type equations with discontinuous nonlinearities},
     journal = {Izvestiya. Mathematics },
     pages = {1162--1178},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - One class of quasilinear elliptic type equations with discontinuous nonlinearities
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1162
EP  - 1178
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/
LA  - en
ID  - IM2_2022_86_6_a6
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T One class of quasilinear elliptic type equations with discontinuous nonlinearities
%J Izvestiya. Mathematics 
%D 2022
%P 1162-1178
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/
%G en
%F IM2_2022_86_6_a6
V. N. Pavlenko; D. K. Potapov. One class of quasilinear elliptic type equations with discontinuous nonlinearities. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1162-1178. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a6/