Completeness of asymmetric products of harmonic functions and uniqueness of the solution
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1123-1142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the family of all pairwise products of regular harmonic functions in a domain $D \subset \mathbb{R}^3$ and Newtonian potentials of points located on a ray outside $D$ is complete in $L_2(D)$. This result is used for justification of uniqueness of a solution to the linear integral equation to which inverse problems of wave sounding in $\mathbb{R}^3$ are reduced. The corresponding inverse problems are shown to be uniquely solvable in spatially non-overdetermined settings where the dimension of the spatial data support coincides with that of the support of the sought-for function. Uniqueness theorems are used for establishing that the axial symmetry of the input data for the inverse problems under consideration implies that of the solutions to these problems.
Keywords: harmonic function, completeness, inverse problem, hyperbolic equation, linear integral equation, uniqueness of solution, axial symmetry.
@article{IM2_2022_86_6_a4,
     author = {M. Yu. Kokurin},
     title = {Completeness of asymmetric products of harmonic functions and uniqueness of the solution},
     journal = {Izvestiya. Mathematics },
     pages = {1123--1142},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Completeness of asymmetric products of harmonic functions and uniqueness of the solution
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1123
EP  - 1142
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/
LA  - en
ID  - IM2_2022_86_6_a4
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Completeness of asymmetric products of harmonic functions and uniqueness of the solution
%J Izvestiya. Mathematics 
%D 2022
%P 1123-1142
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/
%G en
%F IM2_2022_86_6_a4
M. Yu. Kokurin. Completeness of asymmetric products of harmonic functions and uniqueness of the solution. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1123-1142. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/

[1] A. P. Calderón, “On an inverse boundary value problem”, Seminar on numerical analysis and its applications to continuum physics (Rio de Janeiro 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65–73 | MR | Zbl

[2] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127, 2nd ed., Springer, New York, 2006 | DOI | MR | Zbl

[3] C. Kenig and M. Salo, “Recent progress in the Calderón problem with partial data”, Inverse problems and applications, Contemp. Math., 615, Amer. Math. Soc., Providence, RI, 2014, 193–222 | DOI | MR | Zbl

[4] M. Yu. Kokurin, “On the completeness of products of harmonic functions and the uniqueness of the solution of the inverse acoustic sounding problem”, Mat. Zametki, 104:5 (2018), 708–716 ; English transl. Math. Notes, 104:5 (2018), 689–695 | DOI | MR | Zbl | DOI

[5] M. Yu. Kokurin, “Completeness of the asymmetric products of solutions of a second-order elliptic equation and the uniqueness of the solution of an inverse problem for the wave equation”, Differ. Uravn., 57:2 (2021), 255–264 ; English transl. Differ. Equ., 57:2 (2021), 241–250 | MR | Zbl | DOI

[6] V. P. Mikhailov, Partial differential equations, Nauka, Moscow, 1976 ; English transl. Moscow, Mir, 1978 | MR | Zbl | MR | Zbl

[7] A. F. Nikiforov and V. B. Uvarov, Special functions of mathematical physics. A unified introduction with applications, Nauka, Moscow, 1978 ; English transl. Birkhäuser, Basel, 1988 | MR | DOI | MR | Zbl

[8] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiĭ, Quantum theory of angular momentum. Irreducible tensors, spherical harmonics, vector coupling coefficients, $3nj$ symbols, Nauka, Leningrad, 1975; English transl. World Sci. Publ., Teaneck, NJ, 1988 | DOI | MR | Zbl

[9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 ; Russian transl. Mir, Moscow, 1974 | MR | Zbl | Zbl

[10] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, 2nd ed., Nauka, Moscow, 1977 ; English transl. of 1st ed. Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975 | MR | Zbl | DOI | MR | Zbl

[11] I. P. Natanson, Theory of functions of a real variable, 3rd ed., Nauka, Moscow, 1974 ; English transl. of 1st ed. v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961 | MR | MR | MR | Zbl

[12] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 3, Quantum mechanics: non-relativistic theory, 6th ed., Fizmatlit, Moscow, 2008; English transl. of 1st ed. Addison-Wesley Series in Advanced Physics, Pergamon Press, London–Paris; Addison-Wesley, Reading, MA, 1958 | MR | Zbl

[13] N. I. Ahiezer, Lectures in the theory of approximation, 2nd ed., Nauka, Moscow, 1965 (Russian) ; German transl. N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie, Berlin, 1967 | MR | Zbl | MR | Zbl

[14] A. B. Bakushinskii, A. I. Kozlov, and M. Yu. Kokurin, “On some inverse problem for a three-dimensional wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 43:8 (2003), 1201–1209 ; English transl. Comput. Math. Math. Phys., 43:8 (2003), 1149–1158 | MR | Zbl

[15] M. M. Lavrent'ev, “On an inverse problem for the wave equation”, Dokl. Akad. Nauk SSSR, 157:3 (1964), 520–521 ; English transl. Soviet Math. Dokl., 5 (1964), 970–972 | MR | Zbl

[16] M. M. Lavrent'ev, “A class of inverse problems for differential equations”, Dokl. Akad. Nauk SSSR, 160:1 (1965), 32–35 ; English transl. Soviet Math. Dokl., 6 (1965), 29–32 | MR | Zbl

[17] B. Vainberg, Asymptotic methods in equations of mathematical physics, Moscow Univ. Press, Moscow, 1982 (Russian) ; English transl. Gordon and Breach, New York, 1989 | MR | Zbl | MR | Zbl

[18] V. G. Romanov, “On smoothness of a fundamental solution to a second order hyperbolic equation”, Sibirsk. Mat. Zh., 50:4 (2009), 883–889 ; English transl. Siberian Math. J., 50:4 (2009), 700–705 | MR | Zbl | DOI

[19] M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskiĭ, Nauka, Moscow, 1980 ; English transl. Ill-posed problems of mathematical physics and analysis, Transl. Math. Monogr., 64, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl | MR | Zbl

[20] A. G. Ramm, Multidimensional inverse scattering problems, Pitman Monogr. Surveys Pure Appl. Math., 51, Longman Scientific Technical, Harlow; John Wiley Sons, New York, 1992 ; Russian transl. Mir, Moscow, 1994 | MR | Zbl | Zbl

[21] A. L. Bukhgeĭm, G. V. Dyatlov, V. B. Kardakov, and E. V. Tantserev, “Uniqueness in one inverse problem for the elasticity system”, Sibirsk. Mat. Zh., 45:4 (2004), 747–757 ; English transl. Siberian Math. J., 45:4 (2004), 618–627 | MR | Zbl | DOI

[22] M. Yu. Kokurin, “On a multidimensional integral equation with data supported by low-dimensional analytic manifolds”, J. Inverse Ill-Posed Probl., 21:1 (2013), 125–140 | DOI | MR | Zbl

[23] M. V. Klibanov, Jingzhi Li, and Wenlong Zhang, “Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem”, SIAM J. Appl. Math., 81:5 (2021), 1954–1978 | DOI | MR | Zbl

[24] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl

[25] M. V. Klibanov, “Phaseless inverse scattering problems in three dimensions”, SIAM J. Appl. Math., 74:2 (2014), 392–410 | DOI | MR | Zbl

[26] M. V. Klibanov, “Uniqueness of two phaseless non-overdetermined inverse acoustic problems in 3-d”, Appl. Anal., 93:6 (2014), 1135–1149 | DOI | MR | Zbl

[27] M. V. Klibanov and V. G. Romanov, “Reconstruction procedures for two inverse scattering problems without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl

[28] V. G. Romanov, “The problem of recovering the permittivity coefficient from the modulus of the scattered electromagnetic field”, Sibirsk. Mat. Zh., 58:4 (2017), 916–924 ; English transl. Siberian Math. J., 58:4 (2017), 711–717 | DOI | MR | Zbl | DOI

[29] V. G. Romanov, “Phaseless inverse problems that use wave interference”, Sibirsk. Mat. Zh., 59:3 (2018), 626–638 ; English transl. Siberian Math. J., 59:3 (2018), 494–504 | DOI | MR | Zbl | DOI

[30] M. A. Krasnosel'skii, P. P. Zabreyko, E. I. Pustylnik, and P. E. Sobolevski, Integral operators in spaces of summable functions, Nauka, Moscow, 1966 ; English transl. Monographs Textbooks Mech. Solids Fluids: Mech. Anal., Noordhoff International Publishing, Leiden, 1976 | MR | Zbl | MR | Zbl

[31] A. G. Ramm, “Symmetry properties of scattering amplitudes and applications to inverse problems”, J. Math. Anal. Appl., 156:2 (1991), 333–340 | DOI | MR | Zbl