Completeness of asymmetric products of harmonic functions and uniqueness of the solution
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1123-1142

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the family of all pairwise products of regular harmonic functions in a domain $D \subset \mathbb{R}^3$ and Newtonian potentials of points located on a ray outside $D$ is complete in $L_2(D)$. This result is used for justification of uniqueness of a solution to the linear integral equation to which inverse problems of wave sounding in $\mathbb{R}^3$ are reduced. The corresponding inverse problems are shown to be uniquely solvable in spatially non-overdetermined settings where the dimension of the spatial data support coincides with that of the support of the sought-for function. Uniqueness theorems are used for establishing that the axial symmetry of the input data for the inverse problems under consideration implies that of the solutions to these problems.
Keywords: harmonic function, completeness, inverse problem, hyperbolic equation, linear integral equation, uniqueness of solution, axial symmetry.
@article{IM2_2022_86_6_a4,
     author = {M. Yu. Kokurin},
     title = {Completeness of asymmetric products of harmonic functions and uniqueness of the solution},
     journal = {Izvestiya. Mathematics },
     pages = {1123--1142},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - Completeness of asymmetric products of harmonic functions and uniqueness of the solution
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1123
EP  - 1142
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/
LA  - en
ID  - IM2_2022_86_6_a4
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T Completeness of asymmetric products of harmonic functions and uniqueness of the solution
%J Izvestiya. Mathematics 
%D 2022
%P 1123-1142
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/
%G en
%F IM2_2022_86_6_a4
M. Yu. Kokurin. Completeness of asymmetric products of harmonic functions and uniqueness of the solution. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1123-1142. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/