Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_6_a4, author = {M. Yu. Kokurin}, title = {Completeness of asymmetric products of harmonic functions and uniqueness of the solution}, journal = {Izvestiya. Mathematics }, pages = {1123--1142}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/} }
M. Yu. Kokurin. Completeness of asymmetric products of harmonic functions and uniqueness of the solution. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1123-1142. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a4/
[1] A. P. Calderón, “On an inverse boundary value problem”, Seminar on numerical analysis and its applications to continuum physics (Rio de Janeiro 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65–73 | MR | Zbl
[2] V. Isakov, Inverse problems for partial differential equations, Appl. Math. Sci., 127, 2nd ed., Springer, New York, 2006 | DOI | MR | Zbl
[3] C. Kenig and M. Salo, “Recent progress in the Calderón problem with partial data”, Inverse problems and applications, Contemp. Math., 615, Amer. Math. Soc., Providence, RI, 2014, 193–222 | DOI | MR | Zbl
[4] M. Yu. Kokurin, “On the completeness of products of harmonic functions and the uniqueness of the solution of the inverse acoustic sounding problem”, Mat. Zametki, 104:5 (2018), 708–716 ; English transl. Math. Notes, 104:5 (2018), 689–695 | DOI | MR | Zbl | DOI
[5] M. Yu. Kokurin, “Completeness of the asymmetric products of solutions of a second-order elliptic equation and the uniqueness of the solution of an inverse problem for the wave equation”, Differ. Uravn., 57:2 (2021), 255–264 ; English transl. Differ. Equ., 57:2 (2021), 241–250 | MR | Zbl | DOI
[6] V. P. Mikhailov, Partial differential equations, Nauka, Moscow, 1976 ; English transl. Moscow, Mir, 1978 | MR | Zbl | MR | Zbl
[7] A. F. Nikiforov and V. B. Uvarov, Special functions of mathematical physics. A unified introduction with applications, Nauka, Moscow, 1978 ; English transl. Birkhäuser, Basel, 1988 | MR | DOI | MR | Zbl
[8] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiĭ, Quantum theory of angular momentum. Irreducible tensors, spherical harmonics, vector coupling coefficients, $3nj$ symbols, Nauka, Leningrad, 1975; English transl. World Sci. Publ., Teaneck, NJ, 1988 | DOI | MR | Zbl
[9] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 ; Russian transl. Mir, Moscow, 1974 | MR | Zbl | Zbl
[10] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, 2nd ed., Nauka, Moscow, 1977 ; English transl. of 1st ed. Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975 | MR | Zbl | DOI | MR | Zbl
[11] I. P. Natanson, Theory of functions of a real variable, 3rd ed., Nauka, Moscow, 1974 ; English transl. of 1st ed. v. 1, 2, Frederick Ungar Publishing Co., New York, 1955, 1961 | MR | MR | MR | Zbl
[12] L. D. Landau and E. M. Lifshitz, Course of theoretical physics, v. 3, Quantum mechanics: non-relativistic theory, 6th ed., Fizmatlit, Moscow, 2008; English transl. of 1st ed. Addison-Wesley Series in Advanced Physics, Pergamon Press, London–Paris; Addison-Wesley, Reading, MA, 1958 | MR | Zbl
[13] N. I. Ahiezer, Lectures in the theory of approximation, 2nd ed., Nauka, Moscow, 1965 (Russian) ; German transl. N. I. Achieser, Vorlesungen über Approximationstheorie, Math. Lehrbücher und Monogr., II, Akademie, Berlin, 1967 | MR | Zbl | MR | Zbl
[14] A. B. Bakushinskii, A. I. Kozlov, and M. Yu. Kokurin, “On some inverse problem for a three-dimensional wave equation”, Zh. Vychisl. Mat. Mat. Fiz., 43:8 (2003), 1201–1209 ; English transl. Comput. Math. Math. Phys., 43:8 (2003), 1149–1158 | MR | Zbl
[15] M. M. Lavrent'ev, “On an inverse problem for the wave equation”, Dokl. Akad. Nauk SSSR, 157:3 (1964), 520–521 ; English transl. Soviet Math. Dokl., 5 (1964), 970–972 | MR | Zbl
[16] M. M. Lavrent'ev, “A class of inverse problems for differential equations”, Dokl. Akad. Nauk SSSR, 160:1 (1965), 32–35 ; English transl. Soviet Math. Dokl., 6 (1965), 29–32 | MR | Zbl
[17] B. Vainberg, Asymptotic methods in equations of mathematical physics, Moscow Univ. Press, Moscow, 1982 (Russian) ; English transl. Gordon and Breach, New York, 1989 | MR | Zbl | MR | Zbl
[18] V. G. Romanov, “On smoothness of a fundamental solution to a second order hyperbolic equation”, Sibirsk. Mat. Zh., 50:4 (2009), 883–889 ; English transl. Siberian Math. J., 50:4 (2009), 700–705 | MR | Zbl | DOI
[19] M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskiĭ, Nauka, Moscow, 1980 ; English transl. Ill-posed problems of mathematical physics and analysis, Transl. Math. Monogr., 64, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl | MR | Zbl
[20] A. G. Ramm, Multidimensional inverse scattering problems, Pitman Monogr. Surveys Pure Appl. Math., 51, Longman Scientific Technical, Harlow; John Wiley Sons, New York, 1992 ; Russian transl. Mir, Moscow, 1994 | MR | Zbl | Zbl
[21] A. L. Bukhgeĭm, G. V. Dyatlov, V. B. Kardakov, and E. V. Tantserev, “Uniqueness in one inverse problem for the elasticity system”, Sibirsk. Mat. Zh., 45:4 (2004), 747–757 ; English transl. Siberian Math. J., 45:4 (2004), 618–627 | MR | Zbl | DOI
[22] M. Yu. Kokurin, “On a multidimensional integral equation with data supported by low-dimensional analytic manifolds”, J. Inverse Ill-Posed Probl., 21:1 (2013), 125–140 | DOI | MR | Zbl
[23] M. V. Klibanov, Jingzhi Li, and Wenlong Zhang, “Linear Lavrent'ev integral equation for the numerical solution of a nonlinear coefficient inverse problem”, SIAM J. Appl. Math., 81:5 (2021), 1954–1978 | DOI | MR | Zbl
[24] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | MR | Zbl
[25] M. V. Klibanov, “Phaseless inverse scattering problems in three dimensions”, SIAM J. Appl. Math., 74:2 (2014), 392–410 | DOI | MR | Zbl
[26] M. V. Klibanov, “Uniqueness of two phaseless non-overdetermined inverse acoustic problems in 3-d”, Appl. Anal., 93:6 (2014), 1135–1149 | DOI | MR | Zbl
[27] M. V. Klibanov and V. G. Romanov, “Reconstruction procedures for two inverse scattering problems without the phase information”, SIAM J. Appl. Math., 76:1 (2016), 178–196 | DOI | MR | Zbl
[28] V. G. Romanov, “The problem of recovering the permittivity coefficient from the modulus of the scattered electromagnetic field”, Sibirsk. Mat. Zh., 58:4 (2017), 916–924 ; English transl. Siberian Math. J., 58:4 (2017), 711–717 | DOI | MR | Zbl | DOI
[29] V. G. Romanov, “Phaseless inverse problems that use wave interference”, Sibirsk. Mat. Zh., 59:3 (2018), 626–638 ; English transl. Siberian Math. J., 59:3 (2018), 494–504 | DOI | MR | Zbl | DOI
[30] M. A. Krasnosel'skii, P. P. Zabreyko, E. I. Pustylnik, and P. E. Sobolevski, Integral operators in spaces of summable functions, Nauka, Moscow, 1966 ; English transl. Monographs Textbooks Mech. Solids Fluids: Mech. Anal., Noordhoff International Publishing, Leiden, 1976 | MR | Zbl | MR | Zbl
[31] A. G. Ramm, “Symmetry properties of scattering amplitudes and applications to inverse problems”, J. Math. Anal. Appl., 156:2 (1991), 333–340 | DOI | MR | Zbl