When is the search of relatively maximal subgroups reduced to quotient groups?
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1102-1122.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a class finite groups closed under taking subgroups, homomorphic images, and extensions, and let $\mathrm{k}_{\mathfrak{X}}(G)$ be the number of conjugacy classes $\mathfrak{X}$-maximal subgroups of a finite group $G$. The natural problem calling for a description, up to conjugacy, of the $\mathfrak{X}$-maximal subgroups of a given finite group is not inductive. In particular, generally speaking, the image of an $\mathfrak{X}$-maximal subgroup is not $\mathfrak{X}$-maximal in the image of a homomorphism. Nevertheless, there exist group homomorphisms that preserve the number of conjugacy classes of maximal $\mathfrak{X}$-subgroups (for example, the homomorphisms whose kernels are $\mathfrak{X}$-groups). Under such homomorphisms, the image of an $\mathfrak{X}$-maximal subgroup is always $\mathfrak{X}$-maximal, and, moreover, there is a natural bijection between the conjugacy classes of $\mathfrak{X}$-maximal subgroups of the image and preimage. In the present paper, all such homomorphisms are completely described. More precisely, it is shown that, for a homomorphism $\phi$ from a group $G$, the equality $\mathrm{k}_{\mathfrak{X}}(G)=\mathrm{k}_{\mathfrak{X}}(\operatorname{im} \phi)$ holds if and only if $\mathrm{k}_{\mathfrak{X}}(\ker \phi)=1$, which in turn is equivalent to the fact that the composition factors of the kernel of $\phi$ lie in an explicitly given list.
Keywords: finite group, complete class, $\mathfrak{X}$-maximal subgroup, Hall subgroup, reduction $\mathfrak{X}$-theorem.
@article{IM2_2022_86_6_a3,
     author = {Wen Bin Guo and D. O. Revin},
     title = {When is the search of relatively maximal subgroups reduced to quotient groups?},
     journal = {Izvestiya. Mathematics },
     pages = {1102--1122},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/}
}
TY  - JOUR
AU  - Wen Bin Guo
AU  - D. O. Revin
TI  - When is the search of relatively maximal subgroups reduced to quotient groups?
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1102
EP  - 1122
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/
LA  - en
ID  - IM2_2022_86_6_a3
ER  - 
%0 Journal Article
%A Wen Bin Guo
%A D. O. Revin
%T When is the search of relatively maximal subgroups reduced to quotient groups?
%J Izvestiya. Mathematics 
%D 2022
%P 1102-1122
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/
%G en
%F IM2_2022_86_6_a3
Wen Bin Guo; D. O. Revin. When is the search of relatively maximal subgroups reduced to quotient groups?. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1102-1122. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/

[1] H. Wielandt, “On the structure of composite groups”, Proceedings of the international conference on the theory of groups (Austral. Nat. Univ., Canberra 1965), Gordon and Breach Science Publishers Inc., New York, 1967, 379–388 | MR | Zbl

[2] H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung”, Lecture notes, Math. Inst. Univ. Tübingen, 1963/64, Mathematische Werke {/} Mathematical works, v. 1, Group theory, Walter de Gruyter Co., Berlin, 1994, 607–655 | DOI | MR | Zbl

[3] H. Wielandt, “Zusammengesetzte Gruppen: Hölders Programm heute”, The Santa Cruz conference on finite groups (Univ. California, Santa Cruz, CA 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 161–173 | DOI | MR | Zbl

[4] Wenbin Guo, D. O. Revin, and E. P. Vdovin, “The reduction theorem for relatively maximal subgroups”, Bull. Math. Sci., 12:1 (2022), 2150001 | DOI | MR | Zbl

[5] M. L. Sylow, “Théorèmes sur les groupes de substitutions”, Math. Ann., 5:4 (1872), 584–594 | DOI | MR | Zbl

[6] P. Hall, “A note on soluble groups”, J. London Math. Soc., 3:2 (1928), 98–105 | DOI | MR | Zbl

[7] S. A. Chunikhin, “On $\Pi$-separable groups”, Dokl. Akad. Nauk SSSR, 59:3 (1948), 443–445 | MR | Zbl

[8] S. A. Chunikhin, “On $\Pi$-properties of finite groups”, Mat. Sb., 25(67):3 (1949), 321–346 ; English transl. Amer. Math. Soc. Transl. Ser. 2, 1952, Amer. Math. Soc., Providence, RI, 1952, 72 | MR | Zbl | MR

[9] S. A. Chunikhin, “On existence and conjugateness of subgroups of a finite group”, Mat. Sb., 33(75):1 (1953), 111–132 | MR | Zbl

[10] S. A. Chunikhin, “Some trends in the development of the theory of finite groups in recent years”, Uspekhi Mat. Nauk, 16:4(100) (1961), 31–50 ; English transl. Russian Math. Surveys, 16:4 (1961), 29–46 | MR | Zbl | DOI

[11] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, With comput. assistance from J. G. Thackray, Oxford Univ. Press, Eynsham, 1985 | MR | Zbl

[12] Wenbin Guo and D. O. Revin, “Pronormality and submaximal $\mathfrak{X}$-subgroups in finite groups”, Commun. Math. Stat., 6:3 (2018), 289–317 | DOI | MR | Zbl

[13] E. P. Vdovin and D. O. Revin, “Theorems of Sylow type”, Uspekhi Mat. Nauk, 66:5(401) (2011), 3–46 ; English transl. Russian Math. Surveys, 66:5 (2011), 829–870 | DOI | MR | Zbl | DOI

[14] W. Guo and D. O. Revin, “Conjugacy of maximal and submaximal $\mathfrak{X}$-subgroups”, Algebra i Logika, 57:3 (2018), 261–278 ; English transl. Algebra and Logic, 57:3 (2018), 169–181 | DOI | MR | Zbl | DOI

[15] K. Doerk and T. O. Hawkes, Finite soluble groups, De Gruyter Exp. Math., 4, Walter de Gruyter Co., Berlin, 1992 | DOI | MR | Zbl

[16] E. P. Vdovin, N. Ch. Manzaeva, and D. O. Revin, “On the heritability of the Sylow $\pi$-theorem by subgroups”, Mat. Sb., 211:3 (2020), 3–31 ; English transl. Sb. Math., 211:3 (2020), 309–335 | DOI | MR | Zbl | DOI

[17] S. Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, MA, 1965 ; Russian transl. Mir, Moscow, 1968 | MR | Zbl | Zbl

[18] J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lecture Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013 | DOI | MR | Zbl

[19] M. Suzuki, Group theory I, Transl. from the Japan., Grundlehren Math. Wiss., 247, Springer-Verlag, Berlin–New York, 1982 | MR | Zbl

[20] M. Suzuki, Group theory II, Transl. from the Japan., Grundlehren Math. Wiss., 248, Springer-Verlag, New York, 1986 | MR | Zbl

[21] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc. (3), 6:2 (1956), 286–304 | DOI | MR | Zbl

[22] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin–New York, 1967 | DOI | MR | Zbl

[23] D. O. Revin and E. P. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl

[24] V. A. Vedernikov, “Finite groups with Hall $\pi$-subgroups”, Mat. Sb., 203:3 (2012), 23–48 ; English transl. Sb. Math., 203:3 (2012), 326–350 | DOI | MR | Zbl | DOI

[25] A. A. Buturlakin and A. P. Khramova, “A criterion for the existence of a solvable $\pi$-Hall subgroup in a finite group”, Comm. Algebra, 48:3 (2020), 1305–1313 | DOI | MR | Zbl