When is the search of relatively maximal subgroups reduced to quotient groups?
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1102-1122

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{X}$ be a class finite groups closed under taking subgroups, homomorphic images, and extensions, and let $\mathrm{k}_{\mathfrak{X}}(G)$ be the number of conjugacy classes $\mathfrak{X}$-maximal subgroups of a finite group $G$. The natural problem calling for a description, up to conjugacy, of the $\mathfrak{X}$-maximal subgroups of a given finite group is not inductive. In particular, generally speaking, the image of an $\mathfrak{X}$-maximal subgroup is not $\mathfrak{X}$-maximal in the image of a homomorphism. Nevertheless, there exist group homomorphisms that preserve the number of conjugacy classes of maximal $\mathfrak{X}$-subgroups (for example, the homomorphisms whose kernels are $\mathfrak{X}$-groups). Under such homomorphisms, the image of an $\mathfrak{X}$-maximal subgroup is always $\mathfrak{X}$-maximal, and, moreover, there is a natural bijection between the conjugacy classes of $\mathfrak{X}$-maximal subgroups of the image and preimage. In the present paper, all such homomorphisms are completely described. More precisely, it is shown that, for a homomorphism $\phi$ from a group $G$, the equality $\mathrm{k}_{\mathfrak{X}}(G)=\mathrm{k}_{\mathfrak{X}}(\operatorname{im} \phi)$ holds if and only if $\mathrm{k}_{\mathfrak{X}}(\ker \phi)=1$, which in turn is equivalent to the fact that the composition factors of the kernel of $\phi$ lie in an explicitly given list.
Keywords: finite group, complete class, $\mathfrak{X}$-maximal subgroup, Hall subgroup, reduction $\mathfrak{X}$-theorem.
@article{IM2_2022_86_6_a3,
     author = {Wen Bin Guo and D. O. Revin},
     title = {When is the search of relatively maximal subgroups reduced to quotient groups?},
     journal = {Izvestiya. Mathematics },
     pages = {1102--1122},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/}
}
TY  - JOUR
AU  - Wen Bin Guo
AU  - D. O. Revin
TI  - When is the search of relatively maximal subgroups reduced to quotient groups?
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1102
EP  - 1122
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/
LA  - en
ID  - IM2_2022_86_6_a3
ER  - 
%0 Journal Article
%A Wen Bin Guo
%A D. O. Revin
%T When is the search of relatively maximal subgroups reduced to quotient groups?
%J Izvestiya. Mathematics 
%D 2022
%P 1102-1122
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/
%G en
%F IM2_2022_86_6_a3
Wen Bin Guo; D. O. Revin. When is the search of relatively maximal subgroups reduced to quotient groups?. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1102-1122. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a3/