Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_6_a2, author = {K. A. Bekmaganbetov and V. V. Chepyzhov and G. A. Chechkin}, title = {Strong convergence of attractors of reaction-diffusion system with rapidly oscillating}, journal = {Izvestiya. Mathematics }, pages = {1072--1101}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/} }
TY - JOUR AU - K. A. Bekmaganbetov AU - V. V. Chepyzhov AU - G. A. Chechkin TI - Strong convergence of attractors of reaction-diffusion system with rapidly oscillating JO - Izvestiya. Mathematics PY - 2022 SP - 1072 EP - 1101 VL - 86 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/ LA - en ID - IM2_2022_86_6_a2 ER -
%0 Journal Article %A K. A. Bekmaganbetov %A V. V. Chepyzhov %A G. A. Chechkin %T Strong convergence of attractors of reaction-diffusion system with rapidly oscillating %J Izvestiya. Mathematics %D 2022 %P 1072-1101 %V 86 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/ %G en %F IM2_2022_86_6_a2
K. A. Bekmaganbetov; V. V. Chepyzhov; G. A. Chechkin. Strong convergence of attractors of reaction-diffusion system with rapidly oscillating. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1072-1101. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/
[1] K. A. Bekmaganbetov, V. V. Chepyzhov, and G. A. Chechkin, “Homogenization of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium”, Probl. Mat. Anal., 112 (2021), 35–50 ; English transl. J. Math. Sci. (N.Y.), 259:2 (2021), 148–166 | MR | Zbl | DOI
[2] V. A. Marchenko and E. Ya. Khruslov, Boundary value problems in domains with a fine-grained boundary, Naukova Dumka, Kiev, 1974 | MR | Zbl
[3] D. Cioranescu and F. Murat, “Un terme étrange venu d'ailleurs”, Nonlinear partial differential equations and their applications, Collège de France seminar (Paris, 1979/1980), v. 2, Res. Notes in Math., 60, Pitman, Boston, MA–London, 1982, 98–138 ; II (Paris, 1980/1981), v. 3, 70, 154–178 | MR | Zbl | MR | Zbl
[4] D. Cioranescu and J. Saint Jean Paulin, “Homogenization in open sets with holes”, J. Math. Anal. Appl., 71:2 (1979), 590–607 | DOI | MR | Zbl
[5] D. Cioranescu and P. Donato, “On a Robin problem in perforated domains”, Homogenization and applications to material sciences (Nice 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995, 123–135 | MR | Zbl
[6] C. Conca and P. Donato, “Non-homogeneous Neumann problems in domains with small holes”, RAIRO Modél. Math. Anal. Numér., 22:4 (1988), 561–607 | DOI | MR | Zbl
[7] A. G. Belyaev, A. L. Piatnitskiǐ, and G. A. Chechkin, “Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary”, Sibirsk. Mat. Zh., 39:4 (1998), 730–754 ; English transl. Siberian Math. J., 39:4 (1998), 621–644 | MR | Zbl | DOI
[8] Homogenization and porous media, Interdiscip. Appl. Math., 6, ed. U. Hornung, Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[9] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, Fizmatlit, Moscow, 1993 ; English transl. Springer-Verlag, Berlin, 1994 | MR | Zbl | DOI | MR | Zbl
[10] V. A. Marchenko and E. Ya. Khruslov, Homogenization of partial differential equations, Prog. Math. Phys., 46, Birkhäuser Boston, Inc., Boston, MA, 2006 | DOI | MR | Zbl
[11] O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, Moscow Univ. press, Moscow, 1990 ; English transl. Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992 | MR | Zbl | MR | Zbl
[12] Homogenization techniques for composite media (Udine, 1985), Lecture Notes in Phys., 272, eds. É. Sanchez-Palencia and A. Zaoui, Springer, Berlin, 1987 | DOI | MR | Zbl
[13] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 ; Russian transl. Mir, Moscow, 1984 | DOI | MR | Zbl | MR
[14] G. A. Chechkin, A. L. Piatnitski, and A. S. Shamaev, Homogenization. Methods and applications, 3, Tamara Rozhkovskaya, Novosibirsk, 2007; English transl. Transl. Math. Monogr., 234, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[15] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam–New York, 1978 | MR | Zbl
[16] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Nauka, Moscow, 1984 ; English transl. Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl | DOI | MR | Zbl
[17] K. A. Bekmaganbetov, G. A. Chechkin, and V. V. Chepyzhov, “Attractors and a “strange term” in homogenized equation”, C. R. Mécanique, 348:5 (2020), 351–359 | DOI
[18] K. A. Bekmaganbetov, G. A. Chechkin, and V. V. Chepyzhov, “Strong convergence of trajectory attractors for reaction-diffusion systems with random rapidly oscillating terms”, Commun. Pure Appl. Anal., 19:5 (2020), 2419–2443 | DOI | MR | Zbl
[19] K. A. Bekmaganbetov, G. A. Chechkin, and V. V. Chepyzhov, ““Strange term” in homogenization of attractors of reaction-diffusion equation in perforated domain”, Chaos Solitons Fractals, 140 (2020), 110208 | DOI | MR | Zbl
[20] A. V. Babin and M. I. Vishik, Attractors of evolution equations, Nauka, Moscow, 1989 ; English transl. Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | Zbl | DOI | MR | Zbl
[21] V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[22] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | DOI | MR | Zbl
[23] N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, 2nd ed., Fizmatgiz, Moscow, 1958 ; English transl. Hindustan Publishing Corp., Delhi; Gordon and Breach, New York, 1961 | MR | Zbl | MR | Zbl
[24] J. K. Hale and S. M. Verduyn Lunel, “Averaging in infinite dimensions”, J. Integral Equations Appl., 2:4 (1990), 463–494 | DOI | MR | Zbl
[25] A. A. Ilyin, “Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides”, Mat. Sb., 187:5 (1996), 15–58 ; English transl. Sb. Math., 187:5 (1996), 635–677 | DOI | MR | Zbl | DOI
[26] A. A. Ilyin, “Global averaging of dissipative dynamical systems”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 22 (1998), 165–191 | MR
[27] M. Efendiev and S. Zelik, “Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 19:6 (2002), 961–989 | DOI | MR | Zbl
[28] M. Efendiev and S. Zelik, “The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging”, Adv. Differential Equations, 8:6 (2003), 673–732 | MR | Zbl
[29] B. Fiedler and M. I. Vishik, “Quantitative homogenization of analytic semigroups and reaction-diffusion equations with Diophantine spatial frequencies”, Adv. Differential Equations, 6:11 (2001), 1377–1408 | MR | Zbl
[30] B. Fiedler and M. I. Vishik, “Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms”, Asymptot. Anal., 34:2 (2003), 159–185 | MR | Zbl
[31] V. V. Chepyzhov, A. Yu. Goritsky, and M. I. Vishik, “Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation”, Russ. J. Math. Phys., 12:1 (2005), 17–39 | MR | Zbl
[32] V. V. Chepyzhov, M. I. Vishik, and W. L. Wendland, “On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging”, Discrete Contin. Dyn. Syst., 12:1 (2005), 27–38 | DOI | MR | Zbl
[33] M. I. Vishik and V. V. Chepyzhov, “Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time”, Mat. Sb., 194:9 (2003), 3–30 ; English transl. Sb. Math., 194:9 (2003), 1273–1300 | DOI | MR | Zbl | DOI
[34] S. Zelik, “Global averaging and parametric resonances in damped semilinear wave equations”, Proc. Roy. Soc. Edinburgh Sect. A, 136:5 (2006), 1053–1097 | DOI | MR | Zbl
[35] L. S. Pankratov and I. D. Chueshov, “Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients”, Mat. Sb., 190:9 (1999), 99–126 ; English transl. Sb. Math., 190:9 (1999), 1325–1352 | DOI | MR | Zbl | DOI
[36] M. I. Vishik and V. V. Chepyzhov, “Averaging of trajectory attractors of evolution equations with rapidly oscillating terms”, Mat. Sb., 192:1 (2001), 13–50 ; English transl. Sb. Math., 192:1 (2001), 11–47 | DOI | MR | Zbl | DOI
[37] B. Fiedler and M. I. Vishik, “Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients”, Uspekhi Mat. Nauk, 57:4(346) (2002), 75–94 ; English transl. Russian Math. Surveys, 57:4 (2002), 709–728 | DOI | MR | Zbl | DOI
[38] V. V. Chepyzhov and M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems”, ESAIM Control Optim. Calc. Var., 8 (2002), 467–487 | DOI | MR | Zbl
[39] V. V. Chepyzhov and M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor”, J. Dynam. Differential Equations, 19:3 (2007), 655–684 | DOI | MR | Zbl
[40] V. V. Chepyzhov, V. Pata, and M. I. Vishik, “Averaging of nonautonomous damped wave equations with singularly oscillating external forces”, J. Math. Pures Appl. (9), 90:5 (2008), 469–491 | DOI | MR | Zbl
[41] V. V. Chepyzhov, V. Pata, and M. I. Vishik, “Averaging of 2D Navier–Stokes equations with singularly oscillating forces”, Nonlinearity, 22:2 (2009), 351–370 | DOI | MR | Zbl
[42] V. V. Chepyzhov and M. I. Vishik, “Global attractors for non-autonomous Ginzburg–Landau equation with singularly oscillating terms”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29 (2005), 123–148 | MR
[43] M. I. Vishik and V. V. Chepyzhov, “Attractors of dissipative hyperbolic equations with singularly oscillating external forces”, Mat. Zametki, 79:4 (2006), 522–545 ; English transl. Math. Notes, 79:4 (2006), 483–504 | DOI | MR | Zbl | DOI
[44] V. V. Chepyzhov and M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl
[45] M. I. Vishik and V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Uspekhi Mat. Nauk, 66:4(400) (2011), 3–102 ; English transl. Russian Math. Surveys, 66:4 (2011), 637–731 | DOI | MR | Zbl | DOI
[46] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations and related models, Appl. Math. Sci., 183, Springer, New York, NY, 2013 | DOI | MR | Zbl
[47] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Moscow Univ. press, Moscow, 1978 ; English transl. Cambridge Univ. Press, Cambridge–New York, 1982 | MR | Zbl | MR | Zbl
[48] V. V. Chepyzhov and M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | DOI | MR | Zbl
[49] Problèmes aux limites non homogénes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 ; v. 2, 18 ; Russian transl. Mir, Moscow, 1971 | MR | Zbl | MR | MR | Zbl
[50] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl
[51] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965 ; Russian transl. Mir, Moscow, 1967 | MR | Zbl | MR | Zbl
[52] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Gostekhizdat, Moscow, 1956 ; English transl. Pergamon Press, Macmillan, New York, 1964 | MR | Zbl | MR | Zbl
[53] V. P. Mikhailov, Partial differential equations, Nauka, Moscow, 1976 ; English transl. Moscow, Mir, 1978 | MR | Zbl | MR | Zbl
[54] A. G. Belyaev, A. L. Piatnitski, and G. A. Chechkin, “Averaging in a perforated domain with an oscillating third boundary condition”, Mat. Sb., 192:7 (2001), 3–20 ; English transl. Sb. Math., 192:7 (2001), 933–949 | DOI | MR | Zbl | DOI
[55] J. I. Díaz, D. Gómez-Castro, T. A. Shaposhnikova, and M. N. Zubova, “Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles”, Appl. Anal., 98:1-2 (2019), 232–255 | DOI | MR | Zbl
[56] G. A. Chechkin and A. L. Piatnitski, “Homogenization of boundary-value problem in a locally periodic perforated domain”, Appl. Anal., 71:1-4 (1999), 215–235 | DOI | MR | Zbl