Strong convergence of attractors of reaction-diffusion system with rapidly oscillating
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1072-1101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of reaction-diffusion equations in a perforated domain with rapidly oscillating terms in the equations and in the boundary conditions is considered. It is not assumed that the uniqueness theorem conditions are satisfied for the corresponding initial-boundary value problem. We have proved the strong convergence of the trajectory attractors of this system to the trajectory attractors of the homogenized reaction-diffusion system with a ‘strange term’ (potential).
Keywords: attractors, homogenization, reaction-diffusion systems, energy identity, nonlinear equations, weak convergence, strong convergence, perforated domain, rapidly oscillating terms
Mots-clés : strange term.
@article{IM2_2022_86_6_a2,
     author = {K. A. Bekmaganbetov and V. V. Chepyzhov and G. A. Chechkin},
     title = {Strong convergence of attractors of reaction-diffusion system with rapidly oscillating},
     journal = {Izvestiya. Mathematics },
     pages = {1072--1101},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/}
}
TY  - JOUR
AU  - K. A. Bekmaganbetov
AU  - V. V. Chepyzhov
AU  - G. A. Chechkin
TI  - Strong convergence of attractors of reaction-diffusion system with rapidly oscillating
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1072
EP  - 1101
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/
LA  - en
ID  - IM2_2022_86_6_a2
ER  - 
%0 Journal Article
%A K. A. Bekmaganbetov
%A V. V. Chepyzhov
%A G. A. Chechkin
%T Strong convergence of attractors of reaction-diffusion system with rapidly oscillating
%J Izvestiya. Mathematics 
%D 2022
%P 1072-1101
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/
%G en
%F IM2_2022_86_6_a2
K. A. Bekmaganbetov; V. V. Chepyzhov; G. A. Chechkin. Strong convergence of attractors of reaction-diffusion system with rapidly oscillating. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1072-1101. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a2/

[1] K. A. Bekmaganbetov, V. V. Chepyzhov, and G. A. Chechkin, “Homogenization of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium”, Probl. Mat. Anal., 112 (2021), 35–50 ; English transl. J. Math. Sci. (N.Y.), 259:2 (2021), 148–166 | MR | Zbl | DOI

[2] V. A. Marchenko and E. Ya. Khruslov, Boundary value problems in domains with a fine-grained boundary, Naukova Dumka, Kiev, 1974 | MR | Zbl

[3] D. Cioranescu and F. Murat, “Un terme étrange venu d'ailleurs”, Nonlinear partial differential equations and their applications, Collège de France seminar (Paris, 1979/1980), v. 2, Res. Notes in Math., 60, Pitman, Boston, MA–London, 1982, 98–138 ; II (Paris, 1980/1981), v. 3, 70, 154–178 | MR | Zbl | MR | Zbl

[4] D. Cioranescu and J. Saint Jean Paulin, “Homogenization in open sets with holes”, J. Math. Anal. Appl., 71:2 (1979), 590–607 | DOI | MR | Zbl

[5] D. Cioranescu and P. Donato, “On a Robin problem in perforated domains”, Homogenization and applications to material sciences (Nice 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, 1995, 123–135 | MR | Zbl

[6] C. Conca and P. Donato, “Non-homogeneous Neumann problems in domains with small holes”, RAIRO Modél. Math. Anal. Numér., 22:4 (1988), 561–607 | DOI | MR | Zbl

[7] A. G. Belyaev, A. L. Piatnitskiǐ, and G. A. Chechkin, “Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary”, Sibirsk. Mat. Zh., 39:4 (1998), 730–754 ; English transl. Siberian Math. J., 39:4 (1998), 621–644 | MR | Zbl | DOI

[8] Homogenization and porous media, Interdiscip. Appl. Math., 6, ed. U. Hornung, Springer-Verlag, New York, 1997 | DOI | MR | Zbl

[9] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, Fizmatlit, Moscow, 1993 ; English transl. Springer-Verlag, Berlin, 1994 | MR | Zbl | DOI | MR | Zbl

[10] V. A. Marchenko and E. Ya. Khruslov, Homogenization of partial differential equations, Prog. Math. Phys., 46, Birkhäuser Boston, Inc., Boston, MA, 2006 | DOI | MR | Zbl

[11] O. A. Oleinik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, Moscow Univ. press, Moscow, 1990 ; English transl. Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992 | MR | Zbl | MR | Zbl

[12] Homogenization techniques for composite media (Udine, 1985), Lecture Notes in Phys., 272, eds. É. Sanchez-Palencia and A. Zaoui, Springer, Berlin, 1987 | DOI | MR | Zbl

[13] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 ; Russian transl. Mir, Moscow, 1984 | DOI | MR | Zbl | MR

[14] G. A. Chechkin, A. L. Piatnitski, and A. S. Shamaev, Homogenization. Methods and applications, 3, Tamara Rozhkovskaya, Novosibirsk, 2007; English transl. Transl. Math. Monogr., 234, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[15] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam–New York, 1978 | MR | Zbl

[16] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Nauka, Moscow, 1984 ; English transl. Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl | DOI | MR | Zbl

[17] K. A. Bekmaganbetov, G. A. Chechkin, and V. V. Chepyzhov, “Attractors and a “strange term” in homogenized equation”, C. R. Mécanique, 348:5 (2020), 351–359 | DOI

[18] K. A. Bekmaganbetov, G. A. Chechkin, and V. V. Chepyzhov, “Strong convergence of trajectory attractors for reaction-diffusion systems with random rapidly oscillating terms”, Commun. Pure Appl. Anal., 19:5 (2020), 2419–2443 | DOI | MR | Zbl

[19] K. A. Bekmaganbetov, G. A. Chechkin, and V. V. Chepyzhov, ““Strange term” in homogenization of attractors of reaction-diffusion equation in perforated domain”, Chaos Solitons Fractals, 140 (2020), 110208 | DOI | MR | Zbl

[20] A. V. Babin and M. I. Vishik, Attractors of evolution equations, Nauka, Moscow, 1989 ; English transl. Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | Zbl | DOI | MR | Zbl

[21] V. V. Chepyzhov and M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[22] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1988 | DOI | MR | Zbl

[23] N. N. Bogoliubov and Yu. A. Mitropolsky, Asymptotic methods in the theory of non-linear oscillations, 2nd ed., Fizmatgiz, Moscow, 1958 ; English transl. Hindustan Publishing Corp., Delhi; Gordon and Breach, New York, 1961 | MR | Zbl | MR | Zbl

[24] J. K. Hale and S. M. Verduyn Lunel, “Averaging in infinite dimensions”, J. Integral Equations Appl., 2:4 (1990), 463–494 | DOI | MR | Zbl

[25] A. A. Ilyin, “Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides”, Mat. Sb., 187:5 (1996), 15–58 ; English transl. Sb. Math., 187:5 (1996), 635–677 | DOI | MR | Zbl | DOI

[26] A. A. Ilyin, “Global averaging of dissipative dynamical systems”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 22 (1998), 165–191 | MR

[27] M. Efendiev and S. Zelik, “Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization”, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 19:6 (2002), 961–989 | DOI | MR | Zbl

[28] M. Efendiev and S. Zelik, “The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging”, Adv. Differential Equations, 8:6 (2003), 673–732 | MR | Zbl

[29] B. Fiedler and M. I. Vishik, “Quantitative homogenization of analytic semigroups and reaction-diffusion equations with Diophantine spatial frequencies”, Adv. Differential Equations, 6:11 (2001), 1377–1408 | MR | Zbl

[30] B. Fiedler and M. I. Vishik, “Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms”, Asymptot. Anal., 34:2 (2003), 159–185 | MR | Zbl

[31] V. V. Chepyzhov, A. Yu. Goritsky, and M. I. Vishik, “Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation”, Russ. J. Math. Phys., 12:1 (2005), 17–39 | MR | Zbl

[32] V. V. Chepyzhov, M. I. Vishik, and W. L. Wendland, “On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging”, Discrete Contin. Dyn. Syst., 12:1 (2005), 27–38 | DOI | MR | Zbl

[33] M. I. Vishik and V. V. Chepyzhov, “Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time”, Mat. Sb., 194:9 (2003), 3–30 ; English transl. Sb. Math., 194:9 (2003), 1273–1300 | DOI | MR | Zbl | DOI

[34] S. Zelik, “Global averaging and parametric resonances in damped semilinear wave equations”, Proc. Roy. Soc. Edinburgh Sect. A, 136:5 (2006), 1053–1097 | DOI | MR | Zbl

[35] L. S. Pankratov and I. D. Chueshov, “Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients”, Mat. Sb., 190:9 (1999), 99–126 ; English transl. Sb. Math., 190:9 (1999), 1325–1352 | DOI | MR | Zbl | DOI

[36] M. I. Vishik and V. V. Chepyzhov, “Averaging of trajectory attractors of evolution equations with rapidly oscillating terms”, Mat. Sb., 192:1 (2001), 13–50 ; English transl. Sb. Math., 192:1 (2001), 11–47 | DOI | MR | Zbl | DOI

[37] B. Fiedler and M. I. Vishik, “Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating coefficients”, Uspekhi Mat. Nauk, 57:4(346) (2002), 75–94 ; English transl. Russian Math. Surveys, 57:4 (2002), 709–728 | DOI | MR | Zbl | DOI

[38] V. V. Chepyzhov and M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems”, ESAIM Control Optim. Calc. Var., 8 (2002), 467–487 | DOI | MR | Zbl

[39] V. V. Chepyzhov and M. I. Vishik, “Non-autonomous 2D Navier–Stokes system with singularly oscillating external force and its global attractor”, J. Dynam. Differential Equations, 19:3 (2007), 655–684 | DOI | MR | Zbl

[40] V. V. Chepyzhov, V. Pata, and M. I. Vishik, “Averaging of nonautonomous damped wave equations with singularly oscillating external forces”, J. Math. Pures Appl. (9), 90:5 (2008), 469–491 | DOI | MR | Zbl

[41] V. V. Chepyzhov, V. Pata, and M. I. Vishik, “Averaging of 2D Navier–Stokes equations with singularly oscillating forces”, Nonlinearity, 22:2 (2009), 351–370 | DOI | MR | Zbl

[42] V. V. Chepyzhov and M. I. Vishik, “Global attractors for non-autonomous Ginzburg–Landau equation with singularly oscillating terms”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 29 (2005), 123–148 | MR

[43] M. I. Vishik and V. V. Chepyzhov, “Attractors of dissipative hyperbolic equations with singularly oscillating external forces”, Mat. Zametki, 79:4 (2006), 522–545 ; English transl. Math. Notes, 79:4 (2006), 483–504 | DOI | MR | Zbl | DOI

[44] V. V. Chepyzhov and M. I. Vishik, “Evolution equations and their trajectory attractors”, J. Math. Pures Appl. (9), 76:10 (1997), 913–964 | DOI | MR | Zbl

[45] M. I. Vishik and V. V. Chepyzhov, “Trajectory attractors of equations of mathematical physics”, Uspekhi Mat. Nauk, 66:4(400) (2011), 3–102 ; English transl. Russian Math. Surveys, 66:4 (2011), 637–731 | DOI | MR | Zbl | DOI

[46] F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier–Stokes equations and related models, Appl. Math. Sci., 183, Springer, New York, NY, 2013 | DOI | MR | Zbl

[47] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Moscow Univ. press, Moscow, 1978 ; English transl. Cambridge Univ. Press, Cambridge–New York, 1982 | MR | Zbl | MR | Zbl

[48] V. V. Chepyzhov and M. I. Vishik, “Trajectory attractors for reaction-diffusion systems”, Topol. Methods Nonlinear Anal., 7:1 (1996), 49–76 | DOI | MR | Zbl

[49] Problèmes aux limites non homogénes et applications, v. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 ; v. 2, 18 ; Russian transl. Mir, Moscow, 1971 | MR | Zbl | MR | MR | Zbl

[50] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl

[51] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965 ; Russian transl. Mir, Moscow, 1967 | MR | Zbl | MR | Zbl

[52] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Gostekhizdat, Moscow, 1956 ; English transl. Pergamon Press, Macmillan, New York, 1964 | MR | Zbl | MR | Zbl

[53] V. P. Mikhailov, Partial differential equations, Nauka, Moscow, 1976 ; English transl. Moscow, Mir, 1978 | MR | Zbl | MR | Zbl

[54] A. G. Belyaev, A. L. Piatnitski, and G. A. Chechkin, “Averaging in a perforated domain with an oscillating third boundary condition”, Mat. Sb., 192:7 (2001), 3–20 ; English transl. Sb. Math., 192:7 (2001), 933–949 | DOI | MR | Zbl | DOI

[55] J. I. Díaz, D. Gómez-Castro, T. A. Shaposhnikova, and M. N. Zubova, “Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles”, Appl. Anal., 98:1-2 (2019), 232–255 | DOI | MR | Zbl

[56] G. A. Chechkin and A. L. Piatnitski, “Homogenization of boundary-value problem in a locally periodic perforated domain”, Appl. Anal., 71:1-4 (1999), 215–235 | DOI | MR | Zbl