Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_6_a10, author = {I. G. Tsar'kov}, title = {Approximative and structural properties of sets in asymmetric spaces}, journal = {Izvestiya. Mathematics }, pages = {1240--1253}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a10/} }
I. G. Tsar'kov. Approximative and structural properties of sets in asymmetric spaces. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1240-1253. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a10/
[1] I. G. Tsar'kov, “Relations between certain classes of sets in Banach spaces”, Mat. Zametki, 40:2 (1986), 174–196 ; English transl. Math. Notes, 40:2 (1986), 597–610 | MR | Zbl | DOI
[2] I. G. Tsar'kov, “Local and global continuous $\varepsilon$-selection”, Izv. Ross. Akad. Nauk Ser. Mat., 80:2 (2016), 165–184 ; English transl. Izv. Math., 80:2 (2016), 442–461 | DOI | MR | Zbl | DOI
[3] I. G. Tsar'kov, “Continuous $\varepsilon$-selection”, Mat. Sb., 207:2 (2016), 123–142 ; English transl. Sb. Math., 207:2 (2016), 267–285 | DOI | MR | Zbl | DOI
[4] I. G. Tsar'kov, “New criteria for the existence of a continuous $\varepsilon$-selection”, Mat. Zametki, 104:5 (2018), 745–754 ; English transl. Math. Notes, 104:5 (2018), 727–734 | DOI | MR | Zbl | DOI
[5] I. G. Tsar'kov, “Continuous selections for metric projection operators and for their generalizations”, Izv. Ross. Akad. Nauk Ser. Mat., 82:4 (2018), 199–224 ; English transl. Izv. Math., 82:4 (2018), 837–859 | DOI | MR | Zbl | DOI
[6] I. G. Tsar'kov, “Approximative properties of sets and continuous selections”, Mat. Sb., 211:8 (2020), 132–157 ; English transl. Sb. Math., 211:8 (2020), 1190–1211 | DOI | MR | Zbl | DOI
[7] I. G. Tsar'kov, “Solarity and connectedness of sets in the space $C[a,b]$ and in finite-dimensional polyhedral spaces”, Mat. Sb., 213:2 (2022), 149–166 ; English transl. Sb. Math., 213:2 (2022), 268–282 | DOI | Zbl | DOI
[8] A. R. Alimov and I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Uspekhi Mat. Nauk, 71:1(427) (2016), 3–84 ; English transl. Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | MR | Zbl | DOI
[9] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18 | MR | Zbl
[10] H. Berens and L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell_\infty(n)$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl
[11] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279:1 (1987), 87–101 | DOI | MR | Zbl
[12] V. A. Koshcheev, “The connectivity and approximative properties of sets in linear normed spaces”, Mat. Zametki, 17:2 (1975), 193–204 ; English transl. Math. Notes, 17:2 (1975), 114–119 | MR | Zbl | DOI
[13] I. G. Tsar'kov, “Properties of monotone path-connected sets”, Izv. Ross. Akad. Nauk Ser. Mat., 85:2 (2021), 142–171 ; English transl. Izv. Math., 85:2 (2021), 306–331 | DOI | MR | Zbl | DOI
[14] I. G. Tsar'kov, “Properties of suns in the spaces $L^1$ and $C(Q)$”, Russ. J. Math. Phys., 28:3 (2021), 398–405 | DOI | MR | Zbl
[15] V. S. Balaganskii and L. P. Vlasov, “The problem of convexity of Chebyshev sets”, Uspekhi Mat. Nauk, 51:6(312) (1996), 125–188 ; English transl. Russian Math. Surveys, 51:6 (1996), 1127–1190 | DOI | MR | Zbl | DOI
[16] L. Górniewicz, Topological fixed point theory of multivalued mappings, Topol. Fixed Point Theory Appl., 4, 2nd ed., Springer, Dordrecht, 2006 | DOI | MR | Zbl
[17] K. Sakai, Geometric aspects of general topology, Springer Monogr. Math., Springer, Tokyo, 2013 | DOI | MR | Zbl
[18] Ş. Cobzaş, Functional analysis in asymmetric normed spaces, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2013 | DOI | MR | Zbl
[19] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[20] V. Donjuán and N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR | Zbl