Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_6_a1, author = {O. Yu. Aristov}, title = {Functions of class $C^\infty$ in non-commuting variables}, journal = {Izvestiya. Mathematics }, pages = {1033--1071}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a1/} }
O. Yu. Aristov. Functions of class $C^\infty$ in non-commuting variables. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1033-1071. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a1/
[1] C. E. Rickart, General theory of Banach algebras, Univ. Ser. Higher Math., D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–London–New York, 1960 | MR | Zbl
[2] A. Dosi, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloq., 17, Special issue 1 (2010), 749–788 | DOI | MR | Zbl
[3] M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, Nauka, Moscow, 1991 ; English transl. Transl. Math. Monogr., 119, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl | MR | Zbl
[4] C. Foiaş, “Une application des distributions vectorielles à la théorie spectrale”, Bull. Sci. Math. (2), 84 (1960), 147–158 | MR | Zbl
[5] O. Yu. Aristov, Envelopes in the class of Banach algebras of polynomial growth and $C^\infty$-functions of a finite number of free variables, 2022 (to appear) (Russian)
[6] A. Ya. Helemskii, Banach and locally convex algebras, Nauka, Moscow, 1989 ; English transl. Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993 | MR | Zbl | MR | Zbl
[7] A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216 | MR | Zbl
[8] B. Blackadar and J. Cuntz, “Differential Banach algebra norms and smooth subalgebras of $C^*$-algebras”, J. Operator Theory, 26:2 (1991), 255–282 | MR | Zbl
[9] A. Rennie, “Smoothness and locality for nonunital spectral triples”, K-Theory, 28:2 (2003), 127–165 | DOI | MR | Zbl
[10] A. Rennie and J. C. Várilly, Reconstruction of manifolds in noncommutative geometry, arXiv: math/0610418
[11] Bingren Li, Real operator algebras, World Sci., River Edge, NJ, 2003 | DOI | MR | Zbl
[12] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Acad. Publ., Dordrecht, 2004 | DOI | MR | Zbl
[13] M. Baillet, “Analyse spectrale des operateurs hermitiens d'un espace de Banach”, J. London Math. Soc. (2), 19:3 (1979), 497–508 | DOI | MR | Zbl
[14] M. V. Karasev, “Weyl and ordered calculus of noncommuting operators”, Mat. Zametki, 26:6 (1979), 885–907 ; English transl. Math. Notes, 26:6 (1979), 945–958 | MR | Zbl | DOI
[15] M. Arsenović and D. Kečkić, “Elementary operators on Banach algebras and Fourier transform”, Studia Math., 173:2 (2006), 149–166 | DOI | MR | Zbl
[16] V. Shulman and L. Turowska, “Beurling–Pollard type theorems”, J. Lond. Math. Soc. (2), 75:2 (2007), 330–342 | DOI | MR | Zbl
[17] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Math. Soc. Monogr. (N.S.), 20, The Clarendon Press, Oxford Univ. Press, New York, 2000 | MR | Zbl
[18] I. Colojoară and C. Foiaş, Theory of generalized spectral operators, Math. Appl., 9, Gordon and Breach, Science Publishers, New York–London–Paris, 1968 | MR | Zbl
[19] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb., 50, Springer-Verlag, Berlin–New York, 1970 ; Russian transl. J.-P. Kahane, Absolutely convergent Fourier series, Mir, Moscow, 1976 | DOI | MR | Zbl
[20] I. Kaplansky, “Normed algebras”, Duke Math. J., 16:3 (1949), 399–418 | DOI | MR | Zbl
[21] S. Grabiner, “The nilpotency of Banach nil algebras”, Proc. Amer. Math. Soc., 21:2 (1969), 510 | DOI | MR | Zbl
[22] A. Mallios, Topological algebras. Selected topics, North-Holland Math. Stud., 124, Notas Mat., 109, North-Holland, Amsterdam, 1986 | MR | Zbl
[23] W. G. Bade, H. G. Dales, and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 137, no. 656, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl
[24] A. McIntosh and A. Pryde, “A functional calculus for several commuting operators”, Indiana Univ. Math. J., 36:2 (1987), 421–439 | DOI | MR | Zbl
[25] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 ; Russian transl. Mir, Moscow, 1986 | DOI | MR | Zbl | MR | Zbl
[26] E. Albrecht, “Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen”, Manuscripta Math., 14 (1974), 1–40 | DOI | MR | Zbl
[27] I. Moerdijk and G. E. Reyes, Models for smooth infinitesimal analysis, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[28] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Math. Soc. Monogr. (N.S.), 10, The Clarendon Press, Oxford Univ. Press, New York, 1996 | MR | Zbl
[29] D. Beltiţă and M. Şabac, Lie algebras of bounded operators, Oper. Theory Adv. Appl., 120, Birkhäuser Verlag, Basel, 2001 | DOI | MR | Zbl
[30] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987 | MR | Zbl
[31] A. L. Onishchik, E. B. Vinberg, and V. V. Gorbatsevich, “Structure of Lie groups and Lie algebras”, Lie groups and Lie algebras III, Encyclopaedia Math. Sci., 41, VINITI, Moscow, 1990, 5–253 ; English transl. 41, Springer-Verlag, Berlin, 1994, 1–248 | MR | Zbl | MR | Zbl
[32] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967 | MR | Zbl
[33] A. Ya. Helemskii, Lectures and exercises on functional analysis, MCCME, Moscow, 2004; English transl. Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl
[34] J. Hilgert and K.-H. Neeb, Structure and geometry of Lie groups, Springer Monogr. Math., Springer, New York, 2012 | DOI | MR | Zbl
[35] Yu. V. Turovskij, “Commutativity with respect to the modulus of the Jacobson radical of the universal enveloping for a Lie algebra”, Spektr. Teor. Oper. Prilozh., 8, Elm, Baku, 1987, 199–211 | MR | Zbl
[36] R. Narasimhan, Analysis on real and complex manifolds, Mir, Moscow, 1971 ; Russian transl. Adv. Stud. Pure Math., 1, 2nd ed., Masson Cie, Éditeurs, Paris; North-Holland, Amsterdam–London; Elsevier, New York, 1973 | Zbl | MR
[37] L. Bungart, “Holomorphic functions with values in locally convex spaces and applications to integral formulas”, Trans. Amer. Math. Soc., 111:2 (1964), 317–344 | DOI | MR | Zbl
[38] J. A. Navarro González and J. B. Sancho de Salas, $C^\infty$-differentiable spaces, Lecture Notes in Math., 1824, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[39] The Stacks project https://stacks.math.columbia.edu
[40] O. Yu. Aristov, “Sheaves of noncommutative smooth and holomorphic functions associated with the non-Abelian two-dimensional Lie algebra”, Mat. Zametki, 112:1 (2022), 20–30 ; English transl. Math. Notes, 112:1 (2022), 17–25 | DOI | MR | Zbl | DOI
[41] M. Kapranov, “Noncommutative geometry based on commutator expansions”, J. Reine Angew. Math., 1998:505 (1998), 73–118 ; arXiv: math/9802041 | DOI | MR | Zbl
[42] O. Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms”, Tr. Mosk. Mat. Obs., 81, no. 1, MCCME, Moscow, 2020, 117–136 ; Trans. Moscow Math. Soc., 81:1 (2020), 97–114 ; arXiv: 1810.13213 | Zbl | DOI | MR
[43] O. Yu. Aristov, Holomorphically finitely generated Hopf algebras and quantum Lie groups, arXiv: 2006.12175
[44] B. V. Shabat, Introduction to complex analysis, v. II, Functions of several variables, 2nd ed., Nauka, Moscow, 1976 ; English transl. of 3rd ed. Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl