Functions of class $C^\infty$ in non-commuting variables
Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1033-1071.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a certain completion $C^\infty_\mathfrak{g}$ of the universal enveloping algebra of a triangular real Lie algebra $\mathfrak{g}$. It is a Fréchet–Arens–Michael algebra that consists of elements of polynomial growth and satisfies to the following universal property: every Lie algebra homomorphism from $\mathfrak{g}$ to a real Banach algebra all of whose elements are of polynomial growth has an extension to a continuous homomorphism with domain $C^\infty_\mathfrak{g}$. Elements of this algebra can be called functions of class $C^\infty$ in non-commuting variables. The proof is based on representation theory and employs an ordered $C^\infty$-functional calculus. Beyond the general case, we analyze two simple examples. As an auxiliary material, the basics of the general theory of algebras of polynomial growth are developed. We also consider local variants of the completion and obtain a sheaf of non-commutative functions on the Gelfand spectrum of $C^\infty_\mathfrak{g}$ in the case when $\mathfrak{g}$ is nilpotent. In addition, we discuss the theory of holomorphic functions in non-commuting variables introduced by Dosi and apply our methods to prove theorems strengthening some his results.
Keywords: algebra of polynomial growth, non-commutative geometry, triangular Lie algebra, functional calculus.
@article{IM2_2022_86_6_a1,
     author = {O. Yu. Aristov},
     title = {Functions of class $C^\infty$ in non-commuting variables},
     journal = {Izvestiya. Mathematics },
     pages = {1033--1071},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a1/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - Functions of class $C^\infty$ in non-commuting variables
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1033
EP  - 1071
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a1/
LA  - en
ID  - IM2_2022_86_6_a1
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T Functions of class $C^\infty$ in non-commuting variables
%J Izvestiya. Mathematics 
%D 2022
%P 1033-1071
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a1/
%G en
%F IM2_2022_86_6_a1
O. Yu. Aristov. Functions of class $C^\infty$ in non-commuting variables. Izvestiya. Mathematics , Tome 86 (2022) no. 6, pp. 1033-1071. http://geodesic.mathdoc.fr/item/IM2_2022_86_6_a1/

[1] C. E. Rickart, General theory of Banach algebras, Univ. Ser. Higher Math., D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–London–New York, 1960 | MR | Zbl

[2] A. Dosi, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloq., 17, Special issue 1 (2010), 749–788 | DOI | MR | Zbl

[3] M. V. Karasev and V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, Nauka, Moscow, 1991 ; English transl. Transl. Math. Monogr., 119, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl | MR | Zbl

[4] C. Foiaş, “Une application des distributions vectorielles à la théorie spectrale”, Bull. Sci. Math. (2), 84 (1960), 147–158 | MR | Zbl

[5] O. Yu. Aristov, Envelopes in the class of Banach algebras of polynomial growth and $C^\infty$-functions of a finite number of free variables, 2022 (to appear) (Russian)

[6] A. Ya. Helemskii, Banach and locally convex algebras, Nauka, Moscow, 1989 ; English transl. Oxford Sci. Publ., The Clarendon Press, Oxford Univ. Press, New York, 1993 | MR | Zbl | MR | Zbl

[7] A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216 | MR | Zbl

[8] B. Blackadar and J. Cuntz, “Differential Banach algebra norms and smooth subalgebras of $C^*$-algebras”, J. Operator Theory, 26:2 (1991), 255–282 | MR | Zbl

[9] A. Rennie, “Smoothness and locality for nonunital spectral triples”, K-Theory, 28:2 (2003), 127–165 | DOI | MR | Zbl

[10] A. Rennie and J. C. Várilly, Reconstruction of manifolds in noncommutative geometry, arXiv: math/0610418

[11] Bingren Li, Real operator algebras, World Sci., River Edge, NJ, 2003 | DOI | MR | Zbl

[12] P. Aiena, Fredholm and local spectral theory, with applications to multipliers, Kluwer Acad. Publ., Dordrecht, 2004 | DOI | MR | Zbl

[13] M. Baillet, “Analyse spectrale des operateurs hermitiens d'un espace de Banach”, J. London Math. Soc. (2), 19:3 (1979), 497–508 | DOI | MR | Zbl

[14] M. V. Karasev, “Weyl and ordered calculus of noncommuting operators”, Mat. Zametki, 26:6 (1979), 885–907 ; English transl. Math. Notes, 26:6 (1979), 945–958 | MR | Zbl | DOI

[15] M. Arsenović and D. Kečkić, “Elementary operators on Banach algebras and Fourier transform”, Studia Math., 173:2 (2006), 149–166 | DOI | MR | Zbl

[16] V. Shulman and L. Turowska, “Beurling–Pollard type theorems”, J. Lond. Math. Soc. (2), 75:2 (2007), 330–342 | DOI | MR | Zbl

[17] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Math. Soc. Monogr. (N.S.), 20, The Clarendon Press, Oxford Univ. Press, New York, 2000 | MR | Zbl

[18] I. Colojoară and C. Foiaş, Theory of generalized spectral operators, Math. Appl., 9, Gordon and Breach, Science Publishers, New York–London–Paris, 1968 | MR | Zbl

[19] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb., 50, Springer-Verlag, Berlin–New York, 1970 ; Russian transl. J.-P. Kahane, Absolutely convergent Fourier series, Mir, Moscow, 1976 | DOI | MR | Zbl

[20] I. Kaplansky, “Normed algebras”, Duke Math. J., 16:3 (1949), 399–418 | DOI | MR | Zbl

[21] S. Grabiner, “The nilpotency of Banach nil algebras”, Proc. Amer. Math. Soc., 21:2 (1969), 510 | DOI | MR | Zbl

[22] A. Mallios, Topological algebras. Selected topics, North-Holland Math. Stud., 124, Notas Mat., 109, North-Holland, Amsterdam, 1986 | MR | Zbl

[23] W. G. Bade, H. G. Dales, and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 137, no. 656, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[24] A. McIntosh and A. Pryde, “A functional calculus for several commuting operators”, Indiana Univ. Math. J., 36:2 (1987), 421–439 | DOI | MR | Zbl

[25] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 ; Russian transl. Mir, Moscow, 1986 | DOI | MR | Zbl | MR | Zbl

[26] E. Albrecht, “Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen”, Manuscripta Math., 14 (1974), 1–40 | DOI | MR | Zbl

[27] I. Moerdijk and G. E. Reyes, Models for smooth infinitesimal analysis, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[28] J. Eschmeier and M. Putinar, Spectral decompositions and analytic sheaves, London Math. Soc. Monogr. (N.S.), 10, The Clarendon Press, Oxford Univ. Press, New York, 1996 | MR | Zbl

[29] D. Beltiţă and M. Şabac, Lie algebras of bounded operators, Oper. Theory Adv. Appl., 120, Birkhäuser Verlag, Basel, 2001 | DOI | MR | Zbl

[30] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987 | MR | Zbl

[31] A. L. Onishchik, E. B. Vinberg, and V. V. Gorbatsevich, “Structure of Lie groups and Lie algebras”, Lie groups and Lie algebras III, Encyclopaedia Math. Sci., 41, VINITI, Moscow, 1990, 5–253 ; English transl. 41, Springer-Verlag, Berlin, 1994, 1–248 | MR | Zbl | MR | Zbl

[32] F. Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York–London, 1967 | MR | Zbl

[33] A. Ya. Helemskii, Lectures and exercises on functional analysis, MCCME, Moscow, 2004; English transl. Transl. Math. Monogr., 233, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl

[34] J. Hilgert and K.-H. Neeb, Structure and geometry of Lie groups, Springer Monogr. Math., Springer, New York, 2012 | DOI | MR | Zbl

[35] Yu. V. Turovskij, “Commutativity with respect to the modulus of the Jacobson radical of the universal enveloping for a Lie algebra”, Spektr. Teor. Oper. Prilozh., 8, Elm, Baku, 1987, 199–211 | MR | Zbl

[36] R. Narasimhan, Analysis on real and complex manifolds, Mir, Moscow, 1971 ; Russian transl. Adv. Stud. Pure Math., 1, 2nd ed., Masson Cie, Éditeurs, Paris; North-Holland, Amsterdam–London; Elsevier, New York, 1973 | Zbl | MR

[37] L. Bungart, “Holomorphic functions with values in locally convex spaces and applications to integral formulas”, Trans. Amer. Math. Soc., 111:2 (1964), 317–344 | DOI | MR | Zbl

[38] J. A. Navarro González and J. B. Sancho de Salas, $C^\infty$-differentiable spaces, Lecture Notes in Math., 1824, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[39] The Stacks project https://stacks.math.columbia.edu

[40] O. Yu. Aristov, “Sheaves of noncommutative smooth and holomorphic functions associated with the non-Abelian two-dimensional Lie algebra”, Mat. Zametki, 112:1 (2022), 20–30 ; English transl. Math. Notes, 112:1 (2022), 17–25 | DOI | MR | Zbl | DOI

[41] M. Kapranov, “Noncommutative geometry based on commutator expansions”, J. Reine Angew. Math., 1998:505 (1998), 73–118 ; arXiv: math/9802041 | DOI | MR | Zbl

[42] O. Yu. Aristov, “Arens–Michael envelopes of nilpotent Lie algebras, holomorphic functions of exponential type and homological epimorphisms”, Tr. Mosk. Mat. Obs., 81, no. 1, MCCME, Moscow, 2020, 117–136 ; Trans. Moscow Math. Soc., 81:1 (2020), 97–114 ; arXiv: 1810.13213 | Zbl | DOI | MR

[43] O. Yu. Aristov, Holomorphically finitely generated Hopf algebras and quantum Lie groups, arXiv: 2006.12175

[44] B. V. Shabat, Introduction to complex analysis, v. II, Functions of several variables, 2nd ed., Nauka, Moscow, 1976 ; English transl. of 3rd ed. Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl