On the Karatsuba divisor problem
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 992-1019
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an upper bound for the sum $$\Phi_a(x) = \sum_{p\leqslant x}\frac{1}{\tau(p+a)},$$ where $\tau(n)$ is the divisor function, $a\geqslant 1$ is a fixed integer, and $p$ runs through primes up to $x$.
Keywords:
divisor function, shifted primes.
@article{IM2_2022_86_5_a8,
author = {V. V. Iudelevich},
title = {On the {Karatsuba} divisor problem},
journal = {Izvestiya. Mathematics },
pages = {992--1019},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/}
}
V. V. Iudelevich. On the Karatsuba divisor problem. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 992-1019. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/