On the Karatsuba divisor problem
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 992-1019.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper bound for the sum $$\Phi_a(x) = \sum_{p\leqslant x}\frac{1}{\tau(p+a)},$$ where $\tau(n)$ is the divisor function, $a\geqslant 1$ is a fixed integer, and $p$ runs through primes up to $x$.
Keywords: divisor function, shifted primes.
@article{IM2_2022_86_5_a8,
     author = {V. V. Iudelevich},
     title = {On the {Karatsuba} divisor problem},
     journal = {Izvestiya. Mathematics },
     pages = {992--1019},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/}
}
TY  - JOUR
AU  - V. V. Iudelevich
TI  - On the Karatsuba divisor problem
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 992
EP  - 1019
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/
LA  - en
ID  - IM2_2022_86_5_a8
ER  - 
%0 Journal Article
%A V. V. Iudelevich
%T On the Karatsuba divisor problem
%J Izvestiya. Mathematics 
%D 2022
%P 992-1019
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/
%G en
%F IM2_2022_86_5_a8
V. V. Iudelevich. On the Karatsuba divisor problem. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 992-1019. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/

[1] E. C. Titchmarsh, “A divisor problem”, Rend. Circ. Mat. Palermo, 54 (1930), 414–429 | DOI | Zbl

[2] Yu. V. Linnik, “New versions and new uses of the dispersion method in binary additive problems.”, Dokl. Akad. Nauk SSSR, 137:6 (1961), 1299–1302 ; English transl. Soviet Math. Dokl., 2 (1961), 468–471 | MR | Zbl

[3] G. Rodriquez, “Sul problema dei divisori di Titchmarsh”, Boll. Un. Mat. Ital. (3), 20 (1965), 358–366 | MR | Zbl

[4] H. Halberstam, “Footnote to the Titchmarsh–Linnik divisor problem”, Proc. Amer. Math. Soc., 18 (1967), 187–188 | DOI | MR | Zbl

[5] E. Bombieri, J. B. Friedlander, and H. Iwaniec, “Primes in arithmetic progressions to large moduli”, Acta Math., 156:3-4 (1986), 203–251 | DOI | MR | Zbl

[6] É. Fouvry, “Sur le probléme des diviseurs de Titchmarsh”, J. Reine Angew. Math., 1985:357 (1985), 51–76 | DOI | MR | Zbl

[7] S. Drappeau and B. Topacogullari, “Combinatorial identities and Titchmarsh's divisor problem for multiplicative functions”, Algebra Number Theory, 13:10 (2019), 2383–2425 | DOI | MR | Zbl

[8] S. Ramanujan, “Some formulae in the analytic theory of numbers”, Messenger Math., 45 (1916), 81–84 | MR | Zbl

[9] M. A. Korolev, “On Karatsuba's problem concerning the divisor function”, Monatsh. Math., 168:3-4 (2012), 403–441 | DOI | MR | Zbl

[10] V. Kowalenko, “Properties and applications of the reciprocal logarithm numbers”, Acta Appl. Math., 109:2 (2010), 413–437 | DOI | MR | Zbl

[11] A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, Fizmatlit, Moscow, 1994 ; English transl. De Gruyter Exp. Math., 5, Walter de Gruyter Co., Berlin, 1992 | MR | Zbl | DOI | MR | Zbl

[12] A. A. Karatsuba, Basic analytic number theory, Nauka, Moscow, 1975 ; English transl. of 2nd ed. Springer-Verlag, Berlin, 1993 | MR | Zbl | DOI | MR | Zbl

[13] H. Halberstam and H.-E. Richert, Sieve methods, (Repint of the 1974 original ed.), Dover Publ., Inc., Mineola, NY, 2011 | MR | Zbl

[14] J. Friedlander and H. Iwaniec, Opera de cribro, Amer. Math. Soc. Colloq. Publ., 57, Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl