On the Karatsuba divisor problem
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 992-1019

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an upper bound for the sum $$\Phi_a(x) = \sum_{p\leqslant x}\frac{1}{\tau(p+a)},$$ where $\tau(n)$ is the divisor function, $a\geqslant 1$ is a fixed integer, and $p$ runs through primes up to $x$.
Keywords: divisor function, shifted primes.
@article{IM2_2022_86_5_a8,
     author = {V. V. Iudelevich},
     title = {On the {Karatsuba} divisor problem},
     journal = {Izvestiya. Mathematics },
     pages = {992--1019},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/}
}
TY  - JOUR
AU  - V. V. Iudelevich
TI  - On the Karatsuba divisor problem
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 992
EP  - 1019
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/
LA  - en
ID  - IM2_2022_86_5_a8
ER  - 
%0 Journal Article
%A V. V. Iudelevich
%T On the Karatsuba divisor problem
%J Izvestiya. Mathematics 
%D 2022
%P 992-1019
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/
%G en
%F IM2_2022_86_5_a8
V. V. Iudelevich. On the Karatsuba divisor problem. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 992-1019. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a8/