Evolutionary force billiards
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 943-979

Voir la notice de l'article provenant de la source Math-Net.Ru

A new class of integrable billiards has been introduced: evolutionary force billiards. They depend on a parameter and change their topology as energy (time) increases. It has been proved that they realize some important integrable systems with two degrees of freedom on the entire symplectic four-dimensional phase manifold at a time, rather than on only individual isoenergy 3-surfaces. For instance, this occurs in the Euler and Lagrange cases. It has also been proved that these two well-known systems are “billiard-equivalent”, despite the fact that the former one is square integrable, and the latter one allows a linear integral.
Keywords: integrable system, evolutionary force billiards.
Mots-clés : billiard book, Fomenko–Zieschang invariant, Liouville equivalence
@article{IM2_2022_86_5_a6,
     author = {A. T. Fomenko and V. V. Vedyushkina},
     title = {Evolutionary force billiards},
     journal = {Izvestiya. Mathematics },
     pages = {943--979},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a6/}
}
TY  - JOUR
AU  - A. T. Fomenko
AU  - V. V. Vedyushkina
TI  - Evolutionary force billiards
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 943
EP  - 979
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a6/
LA  - en
ID  - IM2_2022_86_5_a6
ER  - 
%0 Journal Article
%A A. T. Fomenko
%A V. V. Vedyushkina
%T Evolutionary force billiards
%J Izvestiya. Mathematics 
%D 2022
%P 943-979
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a6/
%G en
%F IM2_2022_86_5_a6
A. T. Fomenko; V. V. Vedyushkina. Evolutionary force billiards. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 943-979. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a6/