On solvability of semilinear second-order elliptic equations on closed manifolds
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 925-942.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with solvability in the class of weak solutions of one class of semilinear elliptic second-order differential equations on arbitrary closed manifolds. These equations are inhomogeneous analogues of the stationary Kolmogorov–Petrovskii–Piskunov–Fisher equation, and have great applied and mathematical value.
Keywords: Kolmogorov–Petrovskii–Piskunov–Fisher equation, stationary solutions, nonlinear elliptic equations on manifolds, weak solutions, strong solutions.
@article{IM2_2022_86_5_a5,
     author = {D. V. Tunitsky},
     title = {On solvability of semilinear second-order elliptic equations on closed manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {925--942},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On solvability of semilinear second-order elliptic equations on closed manifolds
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 925
EP  - 942
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/
LA  - en
ID  - IM2_2022_86_5_a5
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On solvability of semilinear second-order elliptic equations on closed manifolds
%J Izvestiya. Mathematics 
%D 2022
%P 925-942
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/
%G en
%F IM2_2022_86_5_a5
D. V. Tunitsky. On solvability of semilinear second-order elliptic equations on closed manifolds. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 925-942. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/

[1] A. Kolmogoroff, I. Pretrovsky, and N. Piscounoff, “Étude de l'équation de la diffusion avec croissance de la quantite de matière et son application à un problème biologique”, Bull. Univ. État Moscou, Sér. Int., Sect. A: Math. et Mécan., 1:6 (1937), 1–26 (French) | Zbl

[2] R. A. Fisher, “The wave of advance of advantageous genes”, Ann. Eugenics, 7 (1937), 355–369 | DOI | Zbl

[3] H. Berestycki, F. Hamel, and L. Roques, “Analysis of the periodically fragmented environment model. I. Species persistence”, J. Math. Biol., 51:1 (2005), 75–113 | DOI | MR | Zbl

[4] G. Perelman, Ricci flow with surgery on three-manifoldsя, 2003, arXiv: math.DG/0303109

[5] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003, arXiv: math.DG/0307245

[6] L. I. Nicolaescu, Lectures on the geometry of manifolds, 3rd ed., World Sci. Publ., Hackensack, NJ, 2021 | DOI | MR | Zbl

[7] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 ; Russian transl. Nauka, Moscow, 1989 | DOI | MR | Zbl | MR | Zbl

[8] R. S. Palais, Seminar on the Atiyah–Singer index theorem, With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih, R. Solovay, Ann. of Math. Stud., 57, Princeton Univ. Press, Princeton, NJ, 1965 ; Russian transl. Mir, Moscow, 1970 | MR | Zbl | MR | Zbl

[9] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973 ; Russian transl. Mir, Moscow, 1976 | MR | Zbl | MR

[10] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983 ; Russian transl. Mir, Moscow, 1986 | DOI | MR | Zbl | MR | Zbl

[11] R. Courant and D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, (vol. II by R. Courant), Interscience Publishers, a division of John Wiley Sons, New York–London, 1962 ; Russian transl. Mir, Moscow, 1964 | MR | Zbl | MR | Zbl