On solvability of semilinear second-order elliptic equations on closed manifolds
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 925-942

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with solvability in the class of weak solutions of one class of semilinear elliptic second-order differential equations on arbitrary closed manifolds. These equations are inhomogeneous analogues of the stationary Kolmogorov–Petrovskii–Piskunov–Fisher equation, and have great applied and mathematical value.
Keywords: Kolmogorov–Petrovskii–Piskunov–Fisher equation, stationary solutions, nonlinear elliptic equations on manifolds, weak solutions, strong solutions.
@article{IM2_2022_86_5_a5,
     author = {D. V. Tunitsky},
     title = {On solvability of semilinear second-order elliptic equations on closed manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {925--942},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On solvability of semilinear second-order elliptic equations on closed manifolds
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 925
EP  - 942
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/
LA  - en
ID  - IM2_2022_86_5_a5
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On solvability of semilinear second-order elliptic equations on closed manifolds
%J Izvestiya. Mathematics 
%D 2022
%P 925-942
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/
%G en
%F IM2_2022_86_5_a5
D. V. Tunitsky. On solvability of semilinear second-order elliptic equations on closed manifolds. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 925-942. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a5/