On~classification of Morse--Smale flows on projective-like manifolds
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 876-902

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the problem of topological classification of gradient-like flows without heteroclinic intersections, given on a four-dimensional projective-like manifold, is solved. We show that a complete topological invariant for such flows is a bi-color graph that describes the mutual arrangement of closures of three-dimensional invariant manifolds of saddle equilibrium states. The problem of construction of a canonical representative in each topological equivalence class is solved.
Keywords: gradient-like flows, topological classification, projective-like manifolds, Morse function with three critical points, complex projective plane.
@article{IM2_2022_86_5_a3,
     author = {V. Z. Grines and E. Ya. Gurevich},
     title = {On~classification of {Morse--Smale} flows on projective-like manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {876--902},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a3/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - E. Ya. Gurevich
TI  - On~classification of Morse--Smale flows on projective-like manifolds
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 876
EP  - 902
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a3/
LA  - en
ID  - IM2_2022_86_5_a3
ER  - 
%0 Journal Article
%A V. Z. Grines
%A E. Ya. Gurevich
%T On~classification of Morse--Smale flows on projective-like manifolds
%J Izvestiya. Mathematics 
%D 2022
%P 876-902
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a3/
%G en
%F IM2_2022_86_5_a3
V. Z. Grines; E. Ya. Gurevich. On~classification of Morse--Smale flows on projective-like manifolds. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 876-902. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a3/