Estimates for the
Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 839-851
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain estimates for the
integrals of derivatives of rational functions in
multiply connected domains in the plane.
A sharp order of
growth is found for the integral of the modulus of the
derivative of a finite Blaschke product in the unit disc.
We also extend the results of
Dolzhenko about the integrals of the
derivatives of rational functions to a wider class of domains, namely, to
domains bounded by rectifiable curves without zero interior angles, and show
the sharpness of the results obtained.
Keywords:
rational function, Blaschke product, Hardy space
Mots-clés : conformal map, John domain.
Mots-clés : conformal map, John domain.
@article{IM2_2022_86_5_a1,
author = {A. D. Baranov and I. R. Kayumov},
title = {Estimates for the},
journal = {Izvestiya. Mathematics },
pages = {839--851},
publisher = {mathdoc},
volume = {86},
number = {5},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a1/}
}
A. D. Baranov; I. R. Kayumov. Estimates for the. Izvestiya. Mathematics , Tome 86 (2022) no. 5, pp. 839-851. http://geodesic.mathdoc.fr/item/IM2_2022_86_5_a1/