Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_4_a7, author = {S. G. Tankeev}, title = {On the standard conjecture for compactifications of {N\'eron} models of 4-dimensional {Abelian} varieties}, journal = {Izvestiya. Mathematics }, pages = {797--835}, publisher = {mathdoc}, volume = {86}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a7/} }
TY - JOUR AU - S. G. Tankeev TI - On the standard conjecture for compactifications of N\'eron models of 4-dimensional Abelian varieties JO - Izvestiya. Mathematics PY - 2022 SP - 797 EP - 835 VL - 86 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a7/ LA - en ID - IM2_2022_86_4_a7 ER -
S. G. Tankeev. On the standard conjecture for compactifications of N\'eron models of 4-dimensional Abelian varieties. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 797-835. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a7/
[1] A. Grothendieck, “Standard conjectures on algebraic cycles”, Algebraic geometry, Internat. colloq. (Tata Inst. Fund. Res., Bombay 1968), Oxford Univ. Press, London, 1969, 193–199 | MR | Zbl
[2] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 359–386 | MR | Zbl
[3] S. G. Tankeev, “On the standard conjecture for complex Abelian schemes over smooth projective curves”, Izv. Ross. Akad. Nauk Ser. Mat., 67:3 (2003), 183–224 ; English transl. Izv. Math., 67:3 (2003), 597–635 | DOI | MR | Zbl | DOI
[4] S. G. Tankeev, “On the numerical equivalence of algebraic cycles on potentially simple Abelian schemes of prime relative dimension”, Izv. Ross. Akad. Nauk Ser. Mat., 69:1 (2005), 145–164 ; English transl. Izv. Math., 69:1 (2005), 143–162 | DOI | MR | Zbl | DOI
[5] S. G. Tankeev, “Monoidal transformations and conjectures on algebraic cycles”, Izv. Ross. Akad. Nauk Ser. Mat., 71:3 (2007), 197–224 ; English transl. Izv. Math., 71:3 (2007), 629–655 | DOI | MR | Zbl | DOI
[6] D. I. Lieberman, “Numerical and homological equivalence of algebraic cycles on Hodge manifolds”, Amer. J. Math., 90:2 (1968), 366–374 | DOI | MR | Zbl
[7] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds. II”, Izv. Ross. Akad. Nauk Ser. Mat., 75:5 (2011), 177–194 ; English transl. Izv. Math., 75:5 (2011), 1047–1062 | DOI | MR | Zbl | DOI
[8] D. Arapura, “Motivation for Hodge cycles”, Adv. Math., 207:2 (2006), 762–781 | DOI | MR | Zbl
[9] F. Charles and E. Markman, “The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of $K3$ surfaces”, Compos. Math., 149:3 (2013), 481–494 | DOI | MR | Zbl
[10] O. V. Nikol'skaya, “On algebraic cycles on a fibre product of families of K3-surfaces”, Izv. Ross. Akad. Nauk Ser. Mat., 77:1 (2013), 145–164 ; English transl. Izv. Math., 77:1 (2013), 143–162 | DOI | MR | DOI | Zbl
[11] O. V. Nikol'skaya, “Algebraic cycles on fibre products of non-isotrivial families of regular surfaces with geometric genus 1”, Model. i analiz inform.sistem, 23:4 (2016), 440–465 (Russian) | DOI | MR
[12] S. G. Tankeev, “On the standard conjecture and the existence of a Chow–Lefschetz decomposition for complex projective varieties”, Izv. Ross. Akad. Nauk Ser. Mat., 79:1 (2015), 185–216 ; English transl. Izv. Math., 79:1 (2015), 177–207 | DOI | MR | Zbl | DOI
[13] S. G. Tankeev, “On the standard conjecture for a $3$-dimensional variety fibred by curves with a non-injective Kodaira–Spencer map”, Izv. Ross. Akad. Nauk Ser. Mat., 84:5 (2020), 211–232 ; English transl. Izv. Math., 84:5 (2020), 1016–1035 | DOI | MR | Zbl | DOI
[14] S. G. Tankeev, “On the standard conjecture for projective compactifications of Néron models of $3$-dimensional Abelian varieties”, Izv. Ross. Akad. Nauk Ser. Mat., 85:1 (2021), 154–186 ; English transl. Izv. Math., 85:1 (2021), 145–175 | DOI | MR | Zbl | DOI
[15] K. Künnemann, “Height pairings for algebraic cycles on abelian varieties”, Ann. Sci. École Norm. Sup. (4), 34:4 (2001), 503–523 | DOI | MR | Zbl
[16] K. Künnemann, “Projective regular models for abelian varieties, semistable reduction, and the height pairing”, Duke Math. J., 95:1 (1998), 161–212 | DOI | MR | Zbl
[17] A. Grothendieck, “Modèles de Néron et monodromie”, Groupes de monodromie en géométrie algébrique, Séminaire de géométrie algébrique du Bois-Marie 1967–1969 (SGA 7 I), Lecture Notes in Math., 288, Springer-Verlag, Berlin–New York, 1972, Exp. No. IX, 313–523 | DOI | MR | Zbl
[18] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl
[19] C. Consani, “The local monodromy as a generalized algebraic correspondence”, Doc. Math., 4 (1999), 65–108 | MR | Zbl
[20] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44 (1974), 5–77 | DOI | MR | Zbl
[21] P. Deligne, “Théorie de Hodge. II”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 5–57 ; Russian transl. Matematika. Sb. per., 17, no. 5, Mir, Moscow, 1973, 3–56 | DOI | MR | Zbl | Zbl
[22] S. Zucker, “Hodge theory with degenerating coefficients: $L_2$ cohomology in the Poincaré metric”, Ann. of Math. (2), 109:3 (1979), 415–476 | DOI | MR | Zbl
[23] C. H. Clemens, “Degeneration of Kähler manifolds”, Duke Math. J., 44:2 (1977), 215–290 | DOI | MR | Zbl
[24] Yu. G. Zarhin, “Weights of simple Lie algebras in the cohomology of algebraic varieties”, Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984), 264–304 ; English transl. Math. USSR-Izv., 24:2 (1985), 245–281 | MR | Zbl | DOI
[25] B. B. Gordon, “A survey of the Hodge conjecture for Abelian varieties”, Appendix in: J. D. Lewis, A survey of the Hodge conjecture, CRM Monogr. Ser., 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1999, 297–356 | MR | Zbl
[26] D. Mumford, “A note of Shimura's paper ‘Discontinuous groups and abelian varieties’ ”, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl
[27] S. G. Tankeev, “On the standard conjecture for a fibre product of three elliptic surfaces with pairwise-disjoint discriminant loci”, Izv. Ross. Akad. Nauk Ser. Mat., 83:3 (2019), 213–256 ; English transl. Izv. Math., 83:3 (2019), 613–653 | DOI | MR | Zbl | DOI
[28] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Ch. 1, Actualités Sci. Indust., 1285, 2nd éd., Hermann, Paris, 1971 ; Ch. 2, 3, 1349, 1972 ; Ch. 4–6, 1337, 1968 ; Ch. 7, 8, 1364, 1975 ; Russian transl. Ch. 1–3, Mir, Moscow, 1976 ; Ch. 4–6, 1972 ; Ch. 7, 8, 1978 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl | MR | MR | Zbl | MR
[29] B. J. J. Moonen and Yu. G. Zarhin, “Hodge classes on abelian varieties of low dimension”, Math. Ann., 315:4 (1999), 711–733 | DOI | MR | Zbl
[30] O. V. Oreshkina, On the Hodge group and invariant cycles of a simple Abelian variety with a stable reduction of odd toric rank, 2018, arXiv: 1809.01910
[31] G. A. Mustafin, “Families of algebraic varieties and invariant cycles”, Izv. Akad. Nauk SSSR Ser. Mat., 49:5 (1985), 948–978 ; English transl. Math. USSR-Izv., 27:2 (1986), 251–278 | MR | Zbl | DOI
[32] H. Lange and C. Birkenhake, Complex abelian varieties, Grundlehren Math. Wiss., 302, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[33] S. G. Tankeev, “On an inductive approach to the standard conjecture for a fibred complex variety with strong semistable degeneracies”, Izv. Ross. Akad. Nauk Ser. Mat., 81:6 (2017), 199–231 ; English transl. Izv. Math., 81:6 (2017), 1253–1285 | DOI | MR | Zbl | DOI
[34] C. Voisin, Hodge theory and complex algebraic geometry, Transl. from the French, v. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002 ; v. II, 77, 2003 | DOI | MR | Zbl | DOI | MR | Zbl
[35] S. G. Tankeev, “On the standard conjecture of Lefschetz type for complex projective threefolds”, Izv. Ross. Akad. Nauk Ser. Mat., 74:1 (2010), 175–196 ; English transl. Izv. Math., 74:1 (2010), 167–187 | DOI | MR | Zbl | DOI
[36] A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tohoku Math. J. (2), 9:2 (1957), 119–221 ; Russian transl. (1961), Inostr. Lit., Moscow | DOI | MR | Zbl | Zbl
[37] R. O. Wells, Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1973 ; Russian transl. Mir, Moscow, 1976 | MR | Zbl | MR
[38] R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind., 1252, Publ. Math. Univ. Strasbourg, No. 13, Hermann, Paris, 1958 ; Russian transl. Inostr. Lit., Moscow, 1961 | MR | Zbl | MR | Zbl
[39] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York–Toronto, ON–London, 1966 ; Russian transl. Mir, Moscow, 1971 | MR | Zbl | MR | Zbl
[40] G. E. Bredon, Sheaf theory, McGraw-Hill, New York–Toronto, ON–London, 1967 ; Grad. Texts in Math., 170, 2nd ed., Springer-Verlag, New York, 1997 ; Russian transl. of 1st ed. Nauka, Moscow, 1988 | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[41] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 ; Russian transl. Mir, Moscow, 1983 | MR | Zbl | MR | Zbl
[42] N. Bourbaki, Éléments de mathématique. Algèbre. Ch. 10. Algèbre homologique, Masson, Paris, 1980 ; Russian transl. Nauka, Moscow, 1987 | MR | Zbl | MR | Zbl
[43] S. G. Tankeev, “On algebraic isomorphisms of rational cohomology of a Künneman compactification of the Néron minimal model”, Sib. elektron. mat. izv., 17 (2020), 89–125 | DOI | MR | Zbl
[44] I. M. Gel'fand, Lectures on linear algebra, 4th ed., Nauka, Moscow, 1971 ; English transl. of 2nd ed. Intersci. Tracts Pure Appl. Math., 9, Interscience, New York–London, 1961 | MR | Zbl | MR | Zbl
[45] M. V. Borovoi, “Hodge group and the endomorphism algebra of an Abelian variety”, Topics in group theory and homological algebra, Yaroslavl' Univ. Press, Yaroslavl', 1981, 124–126 (Russian) | MR | Zbl
[46] D. Mumford, Abelian varieties, Tata Inst. Fund. Res. Stud. Math., 5, Oxford Univ. Press, London, 1970 ; Russian transl. Mir, Moscow, 1971 | MR | Zbl | Zbl
[47] S. Lang, Abelian varieties, Reprint of the 1959 original, Springer-Verlag, New York–Berlin, 1983 | DOI | MR | Zbl
[48] J. Jiraud, Cohomologie non abélienne, Grundlehren Math. Wiss., 179, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl
[49] D. Bertrand and B. Edixhoven, “Pink's conjecture on unlikely intersections and families of semi-abelian varieties”, J. Éc. polytech. Math., 7 (2020), 711–742 | DOI | MR | Zbl
[50] K. Künnemann, “Algebraic cycles on toric fibrations over abelian varieties”, Math. Z., 232:3 (1999), 427–435 | DOI | MR | Zbl
[51] K. Kodaira and D. C. Spencer, “On deformations of complex analytic structures. I”, Ann. of Math. (2), 67:2 (1958), 328–401 ; II, 67:3, 403–466 ; III. Stability theorems for complex structures, 71:1 (1960), 43–76 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl
[52] D. Abramovich, K. Karu, K. Matsuki, and J. Włodarczyk, “Torification and factorization of birational maps”, J. Amer. Math. Soc., 15:3 (2002), 531–572 | DOI | MR | Zbl
[53] V. I. Danilov, “The geometry of toric varieties”, Uspekhi Mat. Nauk, 33:2(200) (1978), 85–134 ; English transl. Russian Math. Surveys, 33:2 (1978), 97–154 | MR | Zbl | DOI