An extended form of the Grothendieck--Serre conjecture
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 782-796
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a regular semi-local integral domain containing a field,
$K$ the fraction field of $R$, and $\mu\colon \mathbf{G} \to \mathbf{T}$ an
$R$-group scheme morphism between reductive $R$-group schemes which is
smooth as a scheme morphism. Suppose that $\mathbf{T}$ is an $R$-torus.
Then the map $\mathbf{T}(R)/ \mu(\mathbf{G}(R)) \to
\mathbf{T}(K)/ \mu(\mathbf{G}(K))$ is injective and a purity theorem holds. These and
other results can be derived from an extended form of the Grothendieck–Serre conjecture
proven in the present paper for any such ring $R$.
Keywords:
reductive group schemes, principal bundles, Grothendieck–Serre conjecture, purity theorem.
@article{IM2_2022_86_4_a6,
author = {I. A. Panin},
title = {An extended form of the {Grothendieck--Serre} conjecture},
journal = {Izvestiya. Mathematics },
pages = {782--796},
publisher = {mathdoc},
volume = {86},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a6/}
}
I. A. Panin. An extended form of the Grothendieck--Serre conjecture. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 782-796. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a6/