An extended form of the Grothendieck--Serre conjecture
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 782-796

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a regular semi-local integral domain containing a field, $K$ the fraction field of $R$, and $\mu\colon \mathbf{G} \to \mathbf{T}$ an $R$-group scheme morphism between reductive $R$-group schemes which is smooth as a scheme morphism. Suppose that $\mathbf{T}$ is an $R$-torus. Then the map $\mathbf{T}(R)/ \mu(\mathbf{G}(R)) \to \mathbf{T}(K)/ \mu(\mathbf{G}(K))$ is injective and a purity theorem holds. These and other results can be derived from an extended form of the Grothendieck–Serre conjecture proven in the present paper for any such ring $R$.
Keywords: reductive group schemes, principal bundles, Grothendieck–Serre conjecture, purity theorem.
@article{IM2_2022_86_4_a6,
     author = {I. A. Panin},
     title = {An extended form of the {Grothendieck--Serre} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {782--796},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a6/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - An extended form of the Grothendieck--Serre conjecture
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 782
EP  - 796
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a6/
LA  - en
ID  - IM2_2022_86_4_a6
ER  - 
%0 Journal Article
%A I. A. Panin
%T An extended form of the Grothendieck--Serre conjecture
%J Izvestiya. Mathematics 
%D 2022
%P 782-796
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a6/
%G en
%F IM2_2022_86_4_a6
I. A. Panin. An extended form of the Grothendieck--Serre conjecture. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 782-796. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a6/