Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_4_a5, author = {S. Ya. Novikov and V. V. Sevost'yanova}, title = {Maltsev equal-norm tight frames}, journal = {Izvestiya. Mathematics }, pages = {770--781}, publisher = {mathdoc}, volume = {86}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a5/} }
S. Ya. Novikov; V. V. Sevost'yanova. Maltsev equal-norm tight frames. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 770-781. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a5/
[1] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI | MR | Zbl
[2] M. A. Naimark, “Spectral functions of a symmetric operator”, Izv. Akad. Nauk SSSR Ser. Mat., 4:3 (1940), 277–318 (Russian) | MR | Zbl
[3] B. S. Kashin and T. Yu. Kulikova, “A note on the description of frames of general form”, Mat. Zametki, 72:6 (2002), 941–945 ; English transl. Math. Notes, 72:6 (2002), 863–867 | DOI | MR | Zbl | DOI
[4] S. Ya. Novikov, “Bessel sequences as projections of orthogonal systems”, Mat. Zametki, 81:6 (2007), 893–903 ; English transl. Math. Notes, 81:6 (2007), 800–809 | DOI | MR | Zbl | DOI
[5] A. I. Maltsev, “Remark on the paper 'A formula of Gauss in the theory of least squares' by A. N. Kolmogorov, A. A. Petrov, and Yu. M. Smirnov”, Izv. Akad. Nauk SSSR. Ser. Mat., 11:6 (1947), 567–568 (Russian) | MR | Zbl
[6] A. N. Kolmogorov, A. A. Petrov, and Yu. M. Smirnov, “A formula of Gauss in the theory of least squares”, Izv. Akad. Nauk SSSR. Ser. Mat., 11:6 (1947), 561–566 (Russian) | MR | Zbl
[7] P. G. Casazza and M. T. Leon, “Existence and construction of finite tight frames”, J. Concr. Appl. Math., 4:3 (2006), 277–289 | MR | Zbl
[8] M. S. Bespalov, “Eigenspaces of the discrete Walsh transform”, Probl. peredachi inform., 46:3 (2010), 60–79 ; English transl. Problems Inform. Transmission, 46:3 (2010), 253–271 | MR | Zbl | DOI
[9] M. Fickus, J. Jasper, D. G. Mixon, and J. Peterson, “Hadamard equiangular tight frames”, Appl. Comput. Harmon. Anal., 50:1 (2021), 281–302 | DOI | MR | Zbl
[10] M. Elad, Sparse and redundant representations. From theory to applications in signal and image processing, Springer, New York, 2010 | MR | Zbl