Maltsev equal-norm tight frames
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 770-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

A frame in $\mathbb{R}^d$ is a set of $n\geqslant d$ vectors whose linear span coincides with $\mathbb{R}^d$. A frame is said to be equal-norm if the norms of all its vectors are equal. Tight frames enable one to represent vectors in $\mathbb{R}^d$ in the form closest to the representation in an orthonormal basis. Every equal-norm tight frame is a useful tool for constructing efficient computational algorithms. The construction of such frames in $\mathbb{C}^d$ uses the matrix of the discrete Fourier transform, and the first constructions of equal-norm tight frames in $\mathbb{R}^d$ appeared only at the beginning of the 21st century. The present paper shows that Maltsev's note of 1947 was decades ahead of its time and turned out to be missed by the experts in frame theory, and Maltsev should be credited for the world's first design of an equal-norm tight frame in $\mathbb{R}^d$. Our main purpose is to show the historical significance of Maltsev's discovery. We consider his paper from the point of view of the modern theory of frames in finite-dimensional spaces. Using the Naimark projectors and other operator methods, we study important frame-theoretic properties of the Maltsev construction, such as the equality of moduli of pairwise scalar products (equiangularity) and the presence of full spark, that is, the linear independence of any subset of $d$ vectors in the frame.
Keywords: equal-norm tight frame, analysis operator, synthesis operator, orthogonal rows of a matrix, equiangular frame, full spark.
Mots-clés : matrix
@article{IM2_2022_86_4_a5,
     author = {S. Ya. Novikov and V. V. Sevost'yanova},
     title = {Maltsev equal-norm tight frames},
     journal = {Izvestiya. Mathematics },
     pages = {770--781},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a5/}
}
TY  - JOUR
AU  - S. Ya. Novikov
AU  - V. V. Sevost'yanova
TI  - Maltsev equal-norm tight frames
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 770
EP  - 781
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a5/
LA  - en
ID  - IM2_2022_86_4_a5
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%A V. V. Sevost'yanova
%T Maltsev equal-norm tight frames
%J Izvestiya. Mathematics 
%D 2022
%P 770-781
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a5/
%G en
%F IM2_2022_86_4_a5
S. Ya. Novikov; V. V. Sevost'yanova. Maltsev equal-norm tight frames. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 770-781. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a5/

[1] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2003 | DOI | MR | Zbl

[2] M. A. Naimark, “Spectral functions of a symmetric operator”, Izv. Akad. Nauk SSSR Ser. Mat., 4:3 (1940), 277–318 (Russian) | MR | Zbl

[3] B. S. Kashin and T. Yu. Kulikova, “A note on the description of frames of general form”, Mat. Zametki, 72:6 (2002), 941–945 ; English transl. Math. Notes, 72:6 (2002), 863–867 | DOI | MR | Zbl | DOI

[4] S. Ya. Novikov, “Bessel sequences as projections of orthogonal systems”, Mat. Zametki, 81:6 (2007), 893–903 ; English transl. Math. Notes, 81:6 (2007), 800–809 | DOI | MR | Zbl | DOI

[5] A. I. Maltsev, “Remark on the paper 'A formula of Gauss in the theory of least squares' by A. N. Kolmogorov, A. A. Petrov, and Yu. M. Smirnov”, Izv. Akad. Nauk SSSR. Ser. Mat., 11:6 (1947), 567–568 (Russian) | MR | Zbl

[6] A. N. Kolmogorov, A. A. Petrov, and Yu. M. Smirnov, “A formula of Gauss in the theory of least squares”, Izv. Akad. Nauk SSSR. Ser. Mat., 11:6 (1947), 561–566 (Russian) | MR | Zbl

[7] P. G. Casazza and M. T. Leon, “Existence and construction of finite tight frames”, J. Concr. Appl. Math., 4:3 (2006), 277–289 | MR | Zbl

[8] M. S. Bespalov, “Eigenspaces of the discrete Walsh transform”, Probl. peredachi inform., 46:3 (2010), 60–79 ; English transl. Problems Inform. Transmission, 46:3 (2010), 253–271 | MR | Zbl | DOI

[9] M. Fickus, J. Jasper, D. G. Mixon, and J. Peterson, “Hadamard equiangular tight frames”, Appl. Comput. Harmon. Anal., 50:1 (2021), 281–302 | DOI | MR | Zbl

[10] M. Elad, Sparse and redundant representations. From theory to applications in signal and image processing, Springer, New York, 2010 | MR | Zbl