On the classical solution of the macroscopic model of in-situ leaching of rare metals
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 727-769.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider initial-boundary value problems describing the in-situ leaching of rare metals (uranium, nickel and so on) with an acid solution. Assuming that the solid skeleton of the ground is an absolutely rigid body, we describe the physical process in the pore space at the microscopic level (with characteristic size about 5–20 microns) by the Stokes equations for an incompressible fluid coupled with diffusion–convection equations for the concentrations of the acid and the chemical reaction products in the pore space. Since the solid skeleton changes its geometry during dissolution, the boundary ‘pore space–solid skeleton’ is unknown (free). Using the homogenization method for media with a special periodic structure, we rigorously derive a macroscopic mathematical model (with characteristic size of several meters or tens of meters) of incompressible fluid corresponding to the original microscopic model of the physical process and prove the global-in-time existence and uniqueness theorems for classical solutions of the resulting macroscopic mathematical model.
Keywords: free boundary problems, two-scale convergence, homogenization of periodic structures, fixed point theorem.
@article{IM2_2022_86_4_a4,
     author = {A. M. Meirmanov},
     title = {On the classical solution of the macroscopic model of in-situ leaching of rare metals},
     journal = {Izvestiya. Mathematics },
     pages = {727--769},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - On the classical solution of the macroscopic model of in-situ leaching of rare metals
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 727
EP  - 769
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/
LA  - en
ID  - IM2_2022_86_4_a4
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T On the classical solution of the macroscopic model of in-situ leaching of rare metals
%J Izvestiya. Mathematics 
%D 2022
%P 727-769
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/
%G en
%F IM2_2022_86_4_a4
A. M. Meirmanov. On the classical solution of the macroscopic model of in-situ leaching of rare metals. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 727-769. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/

[1] N. Kalia and V. Balakotaiah, “Effect of medium heterogeneities on reactive dissolution of carbonates”, Chem. Eng. Sci., 64:2 (2009), 376–390 | DOI

[2] C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, “From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization”, Chem. Eng. Sci., 63:12 (2008), 3088–3099 | DOI

[3] M. K. R. Panga, M. Ziauddin, and V. Balakotaiah, “Two-scale continuum model for simulation of wormholes incarbonate acidization”, AIChE J., 51:12 (2005), 3231–3248 | DOI

[4] R. Burridge and J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Am., 70:4 (1981), 1140–1146 | DOI | Zbl

[5] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 ; Russian transl. Mir, Moscow, 1984 | DOI | MR | Zbl | MR

[6] R. P. Gilbert and Z. Lin, “Acoustic field in a shallow, stratified ocean with a poro-elastic seabed”, Z. Angew. Math. Mech., 77:9 (1997), 677–688 | DOI | MR | Zbl

[7] J. L. Ferrin and A. Mikelić, “Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluids”, Math. Methods Appl. Sci., 26:10 (2003), 831–859 | DOI | MR | Zbl

[8] T. Lévy, “Fluids in porous media and suspensions”, Homogenization techniques for composite media (Udine 1985), Lecture Notes in Phys., 272, Springer, Berlin, 1987, 63–119 | DOI | MR | Zbl

[9] J. Sanchez-Hubert, “Asymptotic study of the macroscopic behaviour of a solid-fluid mixture”, Math. Methods Appl. Sci., 2:1 (1980), 1–11 | DOI | MR | Zbl

[10] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, Fizmatlit, Moscow, 1993 ; English transl. Springer-Verlag, Berlin, 1994 | MR | Zbl | DOI | MR | Zbl

[11] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Ross. Akad. Nauk Ser. Mat., 66:2 (2002), 81–148 ; English transl. Izv. Math., 66:2 (2002), 299–365 | DOI | MR | Zbl | DOI

[12] S. E. Pastukhova, “Homogenization of the stationary Stokes system in a perforated domain with a mixed condition on the boundary of cavities”, Differents. Uravneniya, 36:5 (2000), 679–688 ; English transl. Differ. Equ., 36:5 (2000), 755–766 | MR | Zbl | DOI

[13] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Nauka, Moscow, 1984 ; English transl. Math. Appl. (Soviet Ser.), 36, Kluwer, Dordrecht, 1989 | MR | Zbl | DOI | MR | Zbl

[14] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl

[15] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Stud. Differ. Equ., 1, Atlantis Press, Paris, 2014 | DOI | MR | Zbl

[16] L. V. Ovsyannikov, Introduction to continuum mechanics, Parts I, II, Novosibirsk Univ. Press, Novosibirsk, 1977 (Russian)

[17] R. D. O'Dea, M. R. Nelson, A. J. El Haj, S. L. Waters, and H. M. Byrne, “A multiscale analysis of nutrient transport and biological tissue growth in vitro”, Math. Med. Biol., 32:3 (2015), 345–366 | DOI | MR | Zbl

[18] A. Meirmanov, O. V. Galtsev, and R. N. Zimin, Free boundaries in rock mechanics, De Gruyter Ser. Appl. Numer. Math., 1, De Gruyter, Berlin, 2017 | DOI | MR | Zbl

[19] A. M. Meirmanov, The Stefan problem, Nauka, Novosibirsk, 1986 ; English transl. De Gruyter Exp. Math., 3, De Gruyter, Berlin, 1992 | MR | DOI | MR | Zbl

[20] A. N. Kolmogorov and S. V. Fomin, Introductory real analysis, Nauka, Moscow, 1972 ; English transl. of 2nd ed. Corr. reprint, Dover, New York, 1975 | Zbl | MR

[21] B. G. Galerkin, “Rods and plates. Series in some problems of elastic equilibrium of rods and plates”, Vestnik inzhenerov, 1 (1915), 897–908 (Russian)

[22] O. A. Oleinik, “A method of solution of the general Stefan problem”, Dokl. Akad. Nauk SSSR, 135:5 (1960), 1054–1057 ; English transl. Soviet Math. Dokl., 1 (1960), 1350–1354 | MR | Zbl

[23] S. L. Kamenomostskaya, “On the Stefan problem”, Mat. Sb., 53(95):4 (1961), 489–514 (Russian) | MR | Zbl

[24] A. Friedman and D. Kinderlehrer, “A one phase Stefan problem”, Indiana Univ. Math. J., 24:11 (1975), 1005–1035 | DOI | MR | Zbl

[25] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967 ; English transl. Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl | DOI | MR | Zbl

[26] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl

[27] J. P. Aubin, “Un thèorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl

[28] A. Meirmanov and R. Zimin, “Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation”, Electron. J. Differential Equations, 2011 (2011), 115 | MR | Zbl

[29] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975 | MR | Zbl

[30] V. P. Mikhailov and A. K. Gushchin, “Special chapters of the course ‘Equations of mathematical physics’”, Lect. courses of SEC, 7, Steklov Math. Inst., Moscow, 2007, 3–144 | DOI | Zbl

[31] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. Math. Pures Appl. (9), 64:1 (1985), 31–75 | MR | Zbl

[32] E. Acerbi, V. Chiadò Piat, G. Dal Maso, and D. Percivale, “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl

[33] A. Yu. Goritskii, S. N. Kruzhkov, and G. A. Chechkin, Partial differential equations of first order, Moscow Univ. Press, Moscow, 1999 (Russian)

[34] D. Sansone, Equazioni differenziali nel campo reale, v. 1, 2nd ed., N. Zanichelli, Bologna, 1948 ; Russian transl. v. 1, Inostr. Lit., Moscow, 1953 | MR | Zbl

[35] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gos. Izdat. Fiz-Mat. Lit., Moscow, 1961 ; English transl. Math. Appl., 2, 2nd ed., Gordon and Breach, New York–London–Paris, 1969 | MR | Zbl | MR | Zbl

[36] W. I. Smirnow, Lehrgang der höheren Mathematik, v. 4, Part 1, 6th ed., Nauka, Moscow, 1974 ; German transl. v. IV/1, Hochschulbücher fur Math., 5a, VEB Deutscher Verlag Wissensch., Berlin, 1988 | MR | Zbl | MR | Zbl

[37] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 ; Russian transl. Nauka, Moscow, 1989 | DOI | MR | Zbl | MR | Zbl

[38] V. A. Ilyin and È. G. Poznyak, Linear algebra, 4th ed., Nauka, Moscow, 1999; English transl. of 3rd ed. Mir, Moscow, 1986 | MR | Zbl