On the classical solution of the macroscopic model of in-situ leaching of rare metals
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 727-769

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider initial-boundary value problems describing the in-situ leaching of rare metals (uranium, nickel and so on) with an acid solution. Assuming that the solid skeleton of the ground is an absolutely rigid body, we describe the physical process in the pore space at the microscopic level (with characteristic size about 5–20 microns) by the Stokes equations for an incompressible fluid coupled with diffusion–convection equations for the concentrations of the acid and the chemical reaction products in the pore space. Since the solid skeleton changes its geometry during dissolution, the boundary ‘pore space–solid skeleton’ is unknown (free). Using the homogenization method for media with a special periodic structure, we rigorously derive a macroscopic mathematical model (with characteristic size of several meters or tens of meters) of incompressible fluid corresponding to the original microscopic model of the physical process and prove the global-in-time existence and uniqueness theorems for classical solutions of the resulting macroscopic mathematical model.
Keywords: free boundary problems, two-scale convergence, homogenization of periodic structures, fixed point theorem.
@article{IM2_2022_86_4_a4,
     author = {A. M. Meirmanov},
     title = {On the classical solution of the macroscopic model of in-situ leaching of rare metals},
     journal = {Izvestiya. Mathematics },
     pages = {727--769},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/}
}
TY  - JOUR
AU  - A. M. Meirmanov
TI  - On the classical solution of the macroscopic model of in-situ leaching of rare metals
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 727
EP  - 769
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/
LA  - en
ID  - IM2_2022_86_4_a4
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%T On the classical solution of the macroscopic model of in-situ leaching of rare metals
%J Izvestiya. Mathematics 
%D 2022
%P 727-769
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/
%G en
%F IM2_2022_86_4_a4
A. M. Meirmanov. On the classical solution of the macroscopic model of in-situ leaching of rare metals. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 727-769. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/