Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_4_a4, author = {A. M. Meirmanov}, title = {On the classical solution of the macroscopic model of in-situ leaching of rare metals}, journal = {Izvestiya. Mathematics }, pages = {727--769}, publisher = {mathdoc}, volume = {86}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/} }
A. M. Meirmanov. On the classical solution of the macroscopic model of in-situ leaching of rare metals. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 727-769. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a4/
[1] N. Kalia and V. Balakotaiah, “Effect of medium heterogeneities on reactive dissolution of carbonates”, Chem. Eng. Sci., 64:2 (2009), 376–390 | DOI
[2] C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, “From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization”, Chem. Eng. Sci., 63:12 (2008), 3088–3099 | DOI
[3] M. K. R. Panga, M. Ziauddin, and V. Balakotaiah, “Two-scale continuum model for simulation of wormholes incarbonate acidization”, AIChE J., 51:12 (2005), 3231–3248 | DOI
[4] R. Burridge and J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Am., 70:4 (1981), 1140–1146 | DOI | Zbl
[5] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 ; Russian transl. Mir, Moscow, 1984 | DOI | MR | Zbl | MR
[6] R. P. Gilbert and Z. Lin, “Acoustic field in a shallow, stratified ocean with a poro-elastic seabed”, Z. Angew. Math. Mech., 77:9 (1997), 677–688 | DOI | MR | Zbl
[7] J. L. Ferrin and A. Mikelić, “Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluids”, Math. Methods Appl. Sci., 26:10 (2003), 831–859 | DOI | MR | Zbl
[8] T. Lévy, “Fluids in porous media and suspensions”, Homogenization techniques for composite media (Udine 1985), Lecture Notes in Phys., 272, Springer, Berlin, 1987, 63–119 | DOI | MR | Zbl
[9] J. Sanchez-Hubert, “Asymptotic study of the macroscopic behaviour of a solid-fluid mixture”, Math. Methods Appl. Sci., 2:1 (1980), 1–11 | DOI | MR | Zbl
[10] V. V. Jikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, Fizmatlit, Moscow, 1993 ; English transl. Springer-Verlag, Berlin, 1994 | MR | Zbl | DOI | MR | Zbl
[11] V. V. Zhikov, “Homogenization of elasticity problems on singular structures”, Izv. Ross. Akad. Nauk Ser. Mat., 66:2 (2002), 81–148 ; English transl. Izv. Math., 66:2 (2002), 299–365 | DOI | MR | Zbl | DOI
[12] S. E. Pastukhova, “Homogenization of the stationary Stokes system in a perforated domain with a mixed condition on the boundary of cavities”, Differents. Uravneniya, 36:5 (2000), 679–688 ; English transl. Differ. Equ., 36:5 (2000), 755–766 | MR | Zbl | DOI
[13] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Nauka, Moscow, 1984 ; English transl. Math. Appl. (Soviet Ser.), 36, Kluwer, Dordrecht, 1989 | MR | Zbl | DOI | MR | Zbl
[14] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[15] A. Meirmanov, Mathematical models for poroelastic flows, Atlantis Stud. Differ. Equ., 1, Atlantis Press, Paris, 2014 | DOI | MR | Zbl
[16] L. V. Ovsyannikov, Introduction to continuum mechanics, Parts I, II, Novosibirsk Univ. Press, Novosibirsk, 1977 (Russian)
[17] R. D. O'Dea, M. R. Nelson, A. J. El Haj, S. L. Waters, and H. M. Byrne, “A multiscale analysis of nutrient transport and biological tissue growth in vitro”, Math. Med. Biol., 32:3 (2015), 345–366 | DOI | MR | Zbl
[18] A. Meirmanov, O. V. Galtsev, and R. N. Zimin, Free boundaries in rock mechanics, De Gruyter Ser. Appl. Numer. Math., 1, De Gruyter, Berlin, 2017 | DOI | MR | Zbl
[19] A. M. Meirmanov, The Stefan problem, Nauka, Novosibirsk, 1986 ; English transl. De Gruyter Exp. Math., 3, De Gruyter, Berlin, 1992 | MR | DOI | MR | Zbl
[20] A. N. Kolmogorov and S. V. Fomin, Introductory real analysis, Nauka, Moscow, 1972 ; English transl. of 2nd ed. Corr. reprint, Dover, New York, 1975 | Zbl | MR
[21] B. G. Galerkin, “Rods and plates. Series in some problems of elastic equilibrium of rods and plates”, Vestnik inzhenerov, 1 (1915), 897–908 (Russian)
[22] O. A. Oleinik, “A method of solution of the general Stefan problem”, Dokl. Akad. Nauk SSSR, 135:5 (1960), 1054–1057 ; English transl. Soviet Math. Dokl., 1 (1960), 1350–1354 | MR | Zbl
[23] S. L. Kamenomostskaya, “On the Stefan problem”, Mat. Sb., 53(95):4 (1961), 489–514 (Russian) | MR | Zbl
[24] A. Friedman and D. Kinderlehrer, “A one phase Stefan problem”, Indiana Univ. Math. J., 24:11 (1975), 1005–1035 | DOI | MR | Zbl
[25] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967 ; English transl. Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl | DOI | MR | Zbl
[26] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 ; Russian transl. Mir, Moscow, 1972 | MR | Zbl | MR | Zbl
[27] J. P. Aubin, “Un thèorème de compacité”, C. R. Acad. Sci. Paris, 256 (1963), 5042–5044 | MR | Zbl
[28] A. Meirmanov and R. Zimin, “Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation”, Electron. J. Differential Equations, 2011 (2011), 115 | MR | Zbl
[29] R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975 | MR | Zbl
[30] V. P. Mikhailov and A. K. Gushchin, “Special chapters of the course ‘Equations of mathematical physics’”, Lect. courses of SEC, 7, Steklov Math. Inst., Moscow, 2007, 3–144 | DOI | Zbl
[31] C. Conca, “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, J. Math. Pures Appl. (9), 64:1 (1985), 31–75 | MR | Zbl
[32] E. Acerbi, V. Chiadò Piat, G. Dal Maso, and D. Percivale, “An extension theorem from connected sets, and homogenization in general periodic domains”, Nonlinear Anal., 18:5 (1992), 481–496 | DOI | MR | Zbl
[33] A. Yu. Goritskii, S. N. Kruzhkov, and G. A. Chechkin, Partial differential equations of first order, Moscow Univ. Press, Moscow, 1999 (Russian)
[34] D. Sansone, Equazioni differenziali nel campo reale, v. 1, 2nd ed., N. Zanichelli, Bologna, 1948 ; Russian transl. v. 1, Inostr. Lit., Moscow, 1953 | MR | Zbl
[35] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gos. Izdat. Fiz-Mat. Lit., Moscow, 1961 ; English transl. Math. Appl., 2, 2nd ed., Gordon and Breach, New York–London–Paris, 1969 | MR | Zbl | MR | Zbl
[36] W. I. Smirnow, Lehrgang der höheren Mathematik, v. 4, Part 1, 6th ed., Nauka, Moscow, 1974 ; German transl. v. IV/1, Hochschulbücher fur Math., 5a, VEB Deutscher Verlag Wissensch., Berlin, 1988 | MR | Zbl | MR | Zbl
[37] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983 ; Russian transl. Nauka, Moscow, 1989 | DOI | MR | Zbl | MR | Zbl
[38] V. A. Ilyin and È. G. Poznyak, Linear algebra, 4th ed., Nauka, Moscow, 1999; English transl. of 3rd ed. Mir, Moscow, 1986 | MR | Zbl