Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 715-726

Voir la notice de l'article provenant de la source Math-Net.Ru

For the $n$-dimensional multi-parameter quantum torus algebra $\Lambda_{\mathfrak q}$ over a field $k$ defined by a multiplicatively antisymmetric matrix $\mathfrak q = (q_{ij})$ we show that, in the case when the torsion-free rank of the subgroup of $k^\times$ generated by the $q_{ij}$ is large enough, there is a characteristic set of values (possibly with gaps) from $0$ to $n$ that can occur as the Gelfand–Kirillov dimensions of simple modules. The special case when $\mathrm{K}.\dim(\Lambda_{\mathfrak q}) = n - 1$ and $\Lambda_{\mathfrak q}$ is simple, studied in A. Gupta, $\mathrm{GK}$-dimensions of simple modules over $K[X^{\pm 1}, \sigma]$, Comm. Algebra, 41(7) (2013), 2593–2597, is considered without assuming the simplicity, and it is shown that a dichotomy still holds for the GK dimension of simple modules.
Keywords: Gelfand–Kirillov dimension, quantum torus, twisted group algebra
Mots-clés : simple module, Krull dimension.
@article{IM2_2022_86_4_a3,
     author = {Ashish Gupta and Umamaheswaran Arunachalam},
     title = {Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$},
     journal = {Izvestiya. Mathematics },
     pages = {715--726},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/}
}
TY  - JOUR
AU  - Ashish Gupta
AU  - Umamaheswaran Arunachalam
TI  - Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 715
EP  - 726
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/
LA  - en
ID  - IM2_2022_86_4_a3
ER  - 
%0 Journal Article
%A Ashish Gupta
%A Umamaheswaran Arunachalam
%T Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
%J Izvestiya. Mathematics 
%D 2022
%P 715-726
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/
%G en
%F IM2_2022_86_4_a3
Ashish Gupta; Umamaheswaran Arunachalam. Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 715-726. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/