Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 715-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the $n$-dimensional multi-parameter quantum torus algebra $\Lambda_{\mathfrak q}$ over a field $k$ defined by a multiplicatively antisymmetric matrix $\mathfrak q = (q_{ij})$ we show that, in the case when the torsion-free rank of the subgroup of $k^\times$ generated by the $q_{ij}$ is large enough, there is a characteristic set of values (possibly with gaps) from $0$ to $n$ that can occur as the Gelfand–Kirillov dimensions of simple modules. The special case when $\mathrm{K}.\dim(\Lambda_{\mathfrak q}) = n - 1$ and $\Lambda_{\mathfrak q}$ is simple, studied in A. Gupta, $\mathrm{GK}$-dimensions of simple modules over $K[X^{\pm 1}, \sigma]$, Comm. Algebra, 41(7) (2013), 2593–2597, is considered without assuming the simplicity, and it is shown that a dichotomy still holds for the GK dimension of simple modules.
Keywords: Gelfand–Kirillov dimension, quantum torus, twisted group algebra
Mots-clés : simple module, Krull dimension.
@article{IM2_2022_86_4_a3,
     author = {Ashish Gupta and Umamaheswaran Arunachalam},
     title = {Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$},
     journal = {Izvestiya. Mathematics },
     pages = {715--726},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/}
}
TY  - JOUR
AU  - Ashish Gupta
AU  - Umamaheswaran Arunachalam
TI  - Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 715
EP  - 726
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/
LA  - en
ID  - IM2_2022_86_4_a3
ER  - 
%0 Journal Article
%A Ashish Gupta
%A Umamaheswaran Arunachalam
%T Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
%J Izvestiya. Mathematics 
%D 2022
%P 715-726
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/
%G en
%F IM2_2022_86_4_a3
Ashish Gupta; Umamaheswaran Arunachalam. Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 715-726. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/

[1] Y. Manin, Topics in non-commutative geometry, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 1991 | DOI | MR | Zbl

[2] C. J. B. Brookes, “Crossed products and finitely presented groups”, J. Group Theory, 3:4 (2000), 433–444 | DOI | MR | Zbl

[3] V. A. Artamonov, “Construction of modules over quantum polynomials”, Uspekhi Mat Nauk, 50:6(306) (1995), 167–168 ; English transl. Russian Math. Surveys, 50:6 (1995), 1256–1257 | MR | Zbl | DOI

[4] V. A. Artamonov, “Projective modules over quantum polynomial algebras”, Mat. Sb., 185:7 (1994), 3–12 ; English transl. Sb. Math., 82:2 (1995), 261–269 | MR | Zbl | DOI

[5] V. A. Artamonov, “Irreducible modules over quantum polynomials”, Uspekhi Mat. Nauk, 51:6(312) (1996), 189–190 ; English transl. Russian Math. Surveys, 51:6 (1996), 1191–1192 | DOI | MR | Zbl | DOI

[6] V. A. Artamonov, “Modules over quantum polynomials”, Math. Notes, 59:4 (1996), 497–503 ; English transl. Math. Notes, 59:4 (1996), 356–360 | DOI | MR | Zbl | DOI

[7] V. A. Artamonov, “Serre's quantum problem”, Uspekhi Mat. Nauk, 53:4(322) (1998), 3–76 ; English transl. Russian Math. Surveys, 53:4 (1998), 657–730 | DOI | MR | Zbl | DOI

[8] V. A. Artamonov, “General quantum polynomials: irreducible modules and Morita equivalence”, Izv. Ross. Akad. Nauk Ser. Mat., 63:5 (1999), 3–36 ; English transl. Izv. Math., 63:5 (1999), 847–880 | DOI | MR | Zbl | DOI

[9] V. A. Artamonov, “On projective modules over quantum polynomials”, J. Math. Sci. (N.Y.), 93:2 (1999), 135–148 | DOI | MR | Zbl

[10] J. Alev and M. Chamarie, “Dérivations et automorphismes de quelques algèbres quantiques”, Comm. Algebra, 20:6 (1992), 1787–1802 | DOI | MR | Zbl

[11] V. A. Artamonov, “Quantum polynomial algebras”, Algebra – 4, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 26, VINITI, Moscow, 2002, 5–34 ; English transl. J. Math. Sci. (N.Y.), 87:3 (1997), 3441–3462 | DOI | MR | Zbl

[12] V. A. Artamonov and R. Wisbauer, “Homological properties of quantum polynomials”, Algebr. Represent. Theory, 4:3 (2001), 219–247 | DOI | MR | Zbl

[13] K.-H. Neeb, “On the classification of rational quantum tori and the structure of their automorphism groups”, Canad. Math. Bull., 51:2 (2008), 261–282 | DOI | MR | Zbl

[14] J. M. Osborn and D. S. Passman, “Derivations of skew polynomial rings”, J. Algebra, 176:2 (1995), 417–448 | DOI | MR | Zbl

[15] E. Aljadeff and Y. Ginosar, “On the global dimension of multiplicative Weyl algebras”, Arch. Math. (Basel), 62:5 (1994), 401–407 | DOI | MR | Zbl

[16] J. C. McConnell and J. J. Pettit, “Crossed products and multiplicative analogues of Weyl algebras”, J. London Math. Soc. (2), 38:1 (1988), 47–55 | DOI | MR | Zbl

[17] A. Gupta, “The Krull and global dimension of the tensor product of quantum tori”, J. Algebra Appl., 15:9 (2016), 1650174 | DOI | MR | Zbl

[18] V. A. Artamonov, “Quantum polynomials”, Advances in algebra and combinatorics, World Sci. Publ., Hackensack, NJ, 2008, 19–34 | DOI | MR | Zbl

[19] J. C. McConnell, “Quantum groups, filtered rings and Gelfand–Kirillov dimension”, Noncommutative ring theory (Athens, OH 1989), Lecture Notes in Math., 1448, Springer, Berlin, 1990, 139–147 | DOI | MR | Zbl

[20] G. R. Krause and T. H. Lenagan, Growth of algebras and Gelfand–Kirillov dimension, Grad. Stud. Math., 22, Rev. ed., Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[21] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Grad. Stud. Math., 30, Rev. ed., Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[22] S. C. Coutinho, A primer of algebraic $D$-modules, London Math. Soc. Stud. Texts, 33, Cambridge Univ. Press, Cambridge, 1995 | DOI | MR | Zbl

[23] A. Gupta and A. D. Sarkar, “A dichotomy for the Gelfand–Kirillov dimensions of simple modules over simple differential rings”, Algebr. Represent. Theory, 21:3 (2018), 579–587 | DOI | MR | Zbl

[24] J. C. McConnell, “Representations of solvable Lie algebras. V. On the Gelfand–Kirillov dimension of simple modules”, J. Algebra, 76:2 (1982), 489–493 | DOI | MR | Zbl

[25] J. T. Stafford, “Non-holonomic modules over Weyl algebras and enveloping algebras”, Invent. Math., 79:3 (1985), 619–638 | DOI | MR | Zbl

[26] J. Bernstein and V. Lunts, “On non-holonomic irreducible $D$-modules”, Invent. Math., 94:2 (1988), 223–243 | DOI | MR | Zbl

[27] S. C. Coutinho, “On involutive homogeneous varieties and representations of Weyl algebras”, J. Algebra, 227:1 (2000), 195–210 | DOI | MR | Zbl

[28] A. Gupta, “GK dimensions of simple modules over $K[X^{\pm 1}, \sigma]$”, Comm. Algebra, 41:7 (2013), 2593–2597 | DOI | MR | Zbl

[29] A. Gupta, “Representations of the $n$-dimensional quantum torus”, Comm. Algebra, 44:7 (2016), 3077–3087 | DOI | MR | Zbl

[30] D. S. Passman, The algebraic structure of group rings, Corr. reprint of the 1977 original, R. E. Krieger Publishing Co., Inc., Melbourne, FL, 1985 | MR | Zbl

[31] C. J. B. Brookes and J. R. J. Groves, “Modules over crossed products of a division ring by a free Abelian group. I”, J. Algebra, 229:1 (2000), 25–54 | DOI | MR | Zbl

[32] D. S. Passman, Infinite crossed products, Pure Appl. Math., 135, Academic Press, Inc., Boston, MA, 1989 | MR | Zbl

[33] L. H. Rowen, Graduate algebra: commutative view, Grad. Stud. Math., 73, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl

[34] Quanshui Wu, “Gelfand–Kirillov dimension under base field extension”, Israel J. Math., 73:3 (1991), 289–296 | DOI | MR | Zbl

[35] L. H. Rowen, Graduate algebra: noncommutative view, Grad. Stud. Math., 91, Amer. Math. Soc., Providence, RI, 2008 | DOI | MR | Zbl