Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 715-726
Voir la notice de l'article provenant de la source Math-Net.Ru
For the $n$-dimensional multi-parameter quantum torus algebra $\Lambda_{\mathfrak q}$ over a field $k$ defined by a multiplicatively
antisymmetric matrix $\mathfrak q = (q_{ij})$ we show that, in the case when
the torsion-free rank of the subgroup of $k^\times$ generated by the $q_{ij}$
is large enough, there is a characteristic set of values (possibly with gaps)
from $0$ to $n$ that can occur as the Gelfand–Kirillov dimensions of simple
modules. The special case when $\mathrm{K}.\dim(\Lambda_{\mathfrak q}) = n - 1$
and $\Lambda_{\mathfrak q}$ is simple, studied in A. Gupta,
$\mathrm{GK}$-dimensions of simple modules over $K[X^{\pm 1},
\sigma]$, Comm. Algebra, 41(7) (2013), 2593–2597, is considered without
assuming the simplicity, and it is shown that a dichotomy still holds for the
GK dimension of simple modules.
Keywords:
Gelfand–Kirillov dimension, quantum torus, twisted group
algebra
Mots-clés : simple module, Krull dimension.
Mots-clés : simple module, Krull dimension.
@article{IM2_2022_86_4_a3,
author = {Ashish Gupta and Umamaheswaran Arunachalam},
title = {Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$},
journal = {Izvestiya. Mathematics },
pages = {715--726},
publisher = {mathdoc},
volume = {86},
number = {4},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/}
}
TY - JOUR AU - Ashish Gupta AU - Umamaheswaran Arunachalam TI - Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$ JO - Izvestiya. Mathematics PY - 2022 SP - 715 EP - 726 VL - 86 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/ LA - en ID - IM2_2022_86_4_a3 ER -
Ashish Gupta; Umamaheswaran Arunachalam. Gelfand--Kirillov dimensions of simple modules over twisted group algebras $k \ast A$. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 715-726. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a3/