Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 699-714

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the modulus of mean curvature of the leaves of a transversely oriented foliation of codimension one with a generalized Reeb component on an oriented smooth closed three-dimensional Riemannian manifold cannot be everywhere smaller than a certain positive constant depending on the volume, the maximum value of the sectional curvature, and the injectivity radius of the manifold. This means that foliations with small modulus of mean curvature of the leaves are taut.
Keywords: three-dimensional manifolds, mean curvature.
Mots-clés : foliations
@article{IM2_2022_86_4_a2,
     author = {D. V. Bolotov},
     title = {Foliations on closed three-dimensional {Riemannian} manifolds with small modulus of mean curvature of the leaves},
     journal = {Izvestiya. Mathematics },
     pages = {699--714},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 699
EP  - 714
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/
LA  - en
ID  - IM2_2022_86_4_a2
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves
%J Izvestiya. Mathematics 
%D 2022
%P 699-714
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/
%G en
%F IM2_2022_86_4_a2
D. V. Bolotov. Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 699-714. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/