Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 699-714.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the modulus of mean curvature of the leaves of a transversely oriented foliation of codimension one with a generalized Reeb component on an oriented smooth closed three-dimensional Riemannian manifold cannot be everywhere smaller than a certain positive constant depending on the volume, the maximum value of the sectional curvature, and the injectivity radius of the manifold. This means that foliations with small modulus of mean curvature of the leaves are taut.
Keywords: three-dimensional manifolds, mean curvature.
Mots-clés : foliations
@article{IM2_2022_86_4_a2,
     author = {D. V. Bolotov},
     title = {Foliations on closed three-dimensional {Riemannian} manifolds with small modulus of mean curvature of the leaves},
     journal = {Izvestiya. Mathematics },
     pages = {699--714},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/}
}
TY  - JOUR
AU  - D. V. Bolotov
TI  - Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 699
EP  - 714
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/
LA  - en
ID  - IM2_2022_86_4_a2
ER  - 
%0 Journal Article
%A D. V. Bolotov
%T Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves
%J Izvestiya. Mathematics 
%D 2022
%P 699-714
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/
%G en
%F IM2_2022_86_4_a2
D. V. Bolotov. Foliations on closed three-dimensional Riemannian manifolds with small modulus of mean curvature of the leaves. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 699-714. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a2/

[1] I. Tamura, Yōsō no toporojī, Sūgaku Sensho, Iwanami Shoten, Tokyo, 1976 ; English transl. I. Tamura, Topology of foliations: an introduction, Amer. Math. Soc., Providence, RI, 1992; Russian transl. Mir, Moscow, 1979 | MR | Zbl | MR | Zbl

[2] D. Sullivan, “A homological characterization of foliations consisting of minimal surfaces”, Comment. Math. Helv., 54:2 (1979), 218–223 | DOI | MR | Zbl

[3] A. T. Fomenko and D. B. Fuks, A course of homotopic topology, Nauka, Moscow, 1989 (Russian) | MR | Zbl

[4] P. M. Pu, “Some inequalities in certain nonorientable Riemannian manifolds”, Pacific J. Math., 2 (1952), 55–71 | DOI | MR | Zbl

[5] Yu. D. Burago and V. A. Zalgaller, Introduction to Riemannian geometry, Nauka, St.-Petersburg, 1994 (Russian) | MR | Zbl

[6] S. P. Novikov, “Topology of foliations”, Trudy Mosk. Mat. Obshch., 14, Moscow Univ. Press, Moscow, 1965, 248–278 ; English transl. Trans. Moscow Math. Soc., 14, Amer. Math. Soc., Providence, RI, 1965, 268–304 | MR | Zbl

[7] A. Candel and L. Conlon, Foliations II, Grad. Stud. Math., 60, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[8] E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York–Toronto, ON–London, 1966 ; Russian transl. Mir, Moscow, 1971 | MR | Zbl | MR | Zbl

[9] R. Bott and L. W. Tu, Differential forms in algebraic topology, Grad. Texts in Math., 82, Springer-Verlag, New York–Berlin, 1982 ; Russian transl. Nauka, Moscow, 1989 | DOI | MR | Zbl | MR | Zbl