Semiregular Gosset polytopes
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 667-698

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of metric properties of semiregular polytopes in Euclidean spaces $\mathbb{R}^n$ for $n\geqslant 4$ (Gosset polytopes). The results obtained here enable us to complete the classification of regular and semiregular polytopes in Euclidean spaces whose sets of vertices form normal homogeneous or Clifford–Wolf homogeneous metric spaces.
Keywords: finite normal homogeneous metric space, finite homogeneous metric space, finite Clifford–Wolf homogeneous metric space, Gosset polytope, semiregular polytope, regular polytope.
@article{IM2_2022_86_4_a1,
     author = {V. N. Berestovskii and Yu. G. Nikonorov},
     title = {Semiregular {Gosset} polytopes},
     journal = {Izvestiya. Mathematics },
     pages = {667--698},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - Yu. G. Nikonorov
TI  - Semiregular Gosset polytopes
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 667
EP  - 698
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/
LA  - en
ID  - IM2_2022_86_4_a1
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A Yu. G. Nikonorov
%T Semiregular Gosset polytopes
%J Izvestiya. Mathematics 
%D 2022
%P 667-698
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/
%G en
%F IM2_2022_86_4_a1
V. N. Berestovskii; Yu. G. Nikonorov. Semiregular Gosset polytopes. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 667-698. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/