Semiregular Gosset polytopes
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 667-698.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of metric properties of semiregular polytopes in Euclidean spaces $\mathbb{R}^n$ for $n\geqslant 4$ (Gosset polytopes). The results obtained here enable us to complete the classification of regular and semiregular polytopes in Euclidean spaces whose sets of vertices form normal homogeneous or Clifford–Wolf homogeneous metric spaces.
Keywords: finite normal homogeneous metric space, finite homogeneous metric space, finite Clifford–Wolf homogeneous metric space, Gosset polytope, semiregular polytope, regular polytope.
@article{IM2_2022_86_4_a1,
     author = {V. N. Berestovskii and Yu. G. Nikonorov},
     title = {Semiregular {Gosset} polytopes},
     journal = {Izvestiya. Mathematics },
     pages = {667--698},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - Yu. G. Nikonorov
TI  - Semiregular Gosset polytopes
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 667
EP  - 698
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/
LA  - en
ID  - IM2_2022_86_4_a1
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A Yu. G. Nikonorov
%T Semiregular Gosset polytopes
%J Izvestiya. Mathematics 
%D 2022
%P 667-698
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/
%G en
%F IM2_2022_86_4_a1
V. N. Berestovskii; Yu. G. Nikonorov. Semiregular Gosset polytopes. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 667-698. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/

[1] V. N. Berestovskii and Yu. G. Nikonorov, “Finite homogeneous metric spaces”, Sibirsk. Mat. Zh., 60:5 (2019), 973–995 ; English transl. Siberian Math. J., 60:5 (2019), 757–773 | DOI | MR | Zbl | DOI

[2] V. Berestovskii and Yu. Nikonorov, Riemannian manifolds and homogeneous geodesics, Springer Monogr. Math., Springer, Cham, 2020 | DOI | MR | Zbl

[3] M. Berger, Géométrie, v. 1, Actions de groupes, espaces affines et projectifs, Cedic, Paris, 1977 ; v. 2, Espaces euclidiens, triangles, cercles et sphères ; v. 3, Convexes et polytopes, polyèdres réguliers, aires et volumes ; Russian transl. v. 1, Mir, Moscow, 1984 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[4] H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973 | MR | Zbl

[5] H. S. M. Coxeter, Regular complex polytopes, 2nd ed., Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[6] V. N. Berestovskiĭ and Yu. G. Nikonorov, “Finite homogeneous subspaces of Euclidean spaces”, Mat. Tr., 24:1 (2021), 3–34 ; English transl. Siberian Adv. Math., 31:3 (2021), 155–176 | DOI | DOI

[7] L. Schläfli, Theorie der vielfachen Kontinuität, Hrsg. im Auftrage der Denkschriften-Kommission der schweizerischen naturforschenden Gesellschaft von J. H. Graf, Georg Co., Zürich–Basel, 1901 | Zbl

[8] H. S. M. Coxeter, “Regular and semiregular polytopes. I”, Math. Z., 46 (1940), 380–407 | DOI | MR | Zbl

[9] H. S. M. Coxeter, “Regular and semiregular polytopes. II”, Math. Z., 188 (1985), 559–591 | DOI | MR | Zbl

[10] H. S. M. Coxeter, “Regular and semiregular polytopes. III”, Math. Z., 200:1 (1988), 3–45 | DOI | MR | Zbl

[11] Th. Gosset, “On the regular and semiregular figures in space of $n$ dimensions”, Messenger Math., 29 (1899), 43–48 | Zbl

[12] E. L. Elte, The semiregular polytopes of the hyperspaces, Ph.D. thesis, Univ. of Groningen, Gebroeders Hoitsema, Groningen, 1912 | Zbl

[13] G. Blind and R. Blind, “The semiregular polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154 | DOI | MR | Zbl

[14] M. Dutour Sikirić, Regular, semiregular, regular faced and Archimedean polytopes, 2021 http://mathieudutour.altervista.org/Regular/

[15] V. N. Berestovskii and L. Guijarro, “A metric characterization of Riemannian submersions”, Ann. Global Anal. Geom., 18:6 (2000), 577–588 | DOI | MR | Zbl

[16] 4D Euclidean space, 2021 http://eusebeia.dyndns.org/4d/index

[17] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1988 ; Russian transl. v. 1, 2, Mir, Moscow, 1990 | DOI | MR | Zbl | MR | MR

[18] B. N. Delone, “Geometry of positive quadratic forms”, Uspekhi Mat. Nauk, 1937, no. 3, 16–62 (Russian)

[19] B. Kostant, “Experimental evidence for the occurrence of $E_8$ in nature and the radii of the Gosset circles”, Selecta Math. (N.S.), 16:3 (2010), 419–438 | DOI | MR | Zbl

[20] V. A. Fateev and A. B. Zamolodchikov, “Conformal field theory and purely elastic $S$-matrices”, Physics and mathematics of strings, Memorial volume for Vadim Knizhnik, World Sci. Publ., Teaneck, NJ, 1990, 245–270 | DOI | MR | Zbl

[21] N. Matteo, “Two-orbit convex polytopes and tilings”, Discrete Comput. Geom., 55:2 (2016), 296–313 | DOI | MR | Zbl

[22] M. Dutour, R. Erdahl, and K. Rybnikov, “Perfect Delaunay polytopes in low dimensions”, Integers, 7 (2007), A39 | MR | Zbl

[23] K. Böröczky, Jr., Finite packing and covering, Cambridge Tracts in Math., 154, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR | Zbl

[24] H. S. M. Coxeter, “Integral Cayley numbers”, Duke Math. J., 13:4 (1946), 561–578 | DOI | MR | Zbl

[25] J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A. K. Peters, Ltd., Natick, MA, 2003 | DOI | MR | Zbl

[26] H. O. Pflugfelder, Quasigroups and loops: introduction, Sigma Ser. Pure Math., 7, Heldermann Verlag, Berlin, 1990 | MR | Zbl

[27] A. G. Kurosh, General algebra, Lectures for the academic year 1969–1970, Nauka, Moscow, 1974 (Russian) | MR | Zbl