Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_4_a1, author = {V. N. Berestovskii and Yu. G. Nikonorov}, title = {Semiregular {Gosset} polytopes}, journal = {Izvestiya. Mathematics }, pages = {667--698}, publisher = {mathdoc}, volume = {86}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/} }
V. N. Berestovskii; Yu. G. Nikonorov. Semiregular Gosset polytopes. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 667-698. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a1/
[1] V. N. Berestovskii and Yu. G. Nikonorov, “Finite homogeneous metric spaces”, Sibirsk. Mat. Zh., 60:5 (2019), 973–995 ; English transl. Siberian Math. J., 60:5 (2019), 757–773 | DOI | MR | Zbl | DOI
[2] V. Berestovskii and Yu. Nikonorov, Riemannian manifolds and homogeneous geodesics, Springer Monogr. Math., Springer, Cham, 2020 | DOI | MR | Zbl
[3] M. Berger, Géométrie, v. 1, Actions de groupes, espaces affines et projectifs, Cedic, Paris, 1977 ; v. 2, Espaces euclidiens, triangles, cercles et sphères ; v. 3, Convexes et polytopes, polyèdres réguliers, aires et volumes ; Russian transl. v. 1, Mir, Moscow, 1984 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl
[4] H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973 | MR | Zbl
[5] H. S. M. Coxeter, Regular complex polytopes, 2nd ed., Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[6] V. N. Berestovskiĭ and Yu. G. Nikonorov, “Finite homogeneous subspaces of Euclidean spaces”, Mat. Tr., 24:1 (2021), 3–34 ; English transl. Siberian Adv. Math., 31:3 (2021), 155–176 | DOI | DOI
[7] L. Schläfli, Theorie der vielfachen Kontinuität, Hrsg. im Auftrage der Denkschriften-Kommission der schweizerischen naturforschenden Gesellschaft von J. H. Graf, Georg Co., Zürich–Basel, 1901 | Zbl
[8] H. S. M. Coxeter, “Regular and semiregular polytopes. I”, Math. Z., 46 (1940), 380–407 | DOI | MR | Zbl
[9] H. S. M. Coxeter, “Regular and semiregular polytopes. II”, Math. Z., 188 (1985), 559–591 | DOI | MR | Zbl
[10] H. S. M. Coxeter, “Regular and semiregular polytopes. III”, Math. Z., 200:1 (1988), 3–45 | DOI | MR | Zbl
[11] Th. Gosset, “On the regular and semiregular figures in space of $n$ dimensions”, Messenger Math., 29 (1899), 43–48 | Zbl
[12] E. L. Elte, The semiregular polytopes of the hyperspaces, Ph.D. thesis, Univ. of Groningen, Gebroeders Hoitsema, Groningen, 1912 | Zbl
[13] G. Blind and R. Blind, “The semiregular polytopes”, Comment. Math. Helv., 66:1 (1991), 150–154 | DOI | MR | Zbl
[14] M. Dutour Sikirić, Regular, semiregular, regular faced and Archimedean polytopes, 2021 http://mathieudutour.altervista.org/Regular/
[15] V. N. Berestovskii and L. Guijarro, “A metric characterization of Riemannian submersions”, Ann. Global Anal. Geom., 18:6 (2000), 577–588 | DOI | MR | Zbl
[16] 4D Euclidean space, 2021 http://eusebeia.dyndns.org/4d/index
[17] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1988 ; Russian transl. v. 1, 2, Mir, Moscow, 1990 | DOI | MR | Zbl | MR | MR
[18] B. N. Delone, “Geometry of positive quadratic forms”, Uspekhi Mat. Nauk, 1937, no. 3, 16–62 (Russian)
[19] B. Kostant, “Experimental evidence for the occurrence of $E_8$ in nature and the radii of the Gosset circles”, Selecta Math. (N.S.), 16:3 (2010), 419–438 | DOI | MR | Zbl
[20] V. A. Fateev and A. B. Zamolodchikov, “Conformal field theory and purely elastic $S$-matrices”, Physics and mathematics of strings, Memorial volume for Vadim Knizhnik, World Sci. Publ., Teaneck, NJ, 1990, 245–270 | DOI | MR | Zbl
[21] N. Matteo, “Two-orbit convex polytopes and tilings”, Discrete Comput. Geom., 55:2 (2016), 296–313 | DOI | MR | Zbl
[22] M. Dutour, R. Erdahl, and K. Rybnikov, “Perfect Delaunay polytopes in low dimensions”, Integers, 7 (2007), A39 | MR | Zbl
[23] K. Böröczky, Jr., Finite packing and covering, Cambridge Tracts in Math., 154, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR | Zbl
[24] H. S. M. Coxeter, “Integral Cayley numbers”, Duke Math. J., 13:4 (1946), 561–578 | DOI | MR | Zbl
[25] J. H. Conway and D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A. K. Peters, Ltd., Natick, MA, 2003 | DOI | MR | Zbl
[26] H. O. Pflugfelder, Quasigroups and loops: introduction, Sigma Ser. Pure Math., 7, Heldermann Verlag, Berlin, 1990 | MR | Zbl
[27] A. G. Kurosh, General algebra, Lectures for the academic year 1969–1970, Nauka, Moscow, 1974 (Russian) | MR | Zbl