Canonical form of the $C^*$-algebra of eikonals related to a~metric graph
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 621-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eikonal algebra $\mathfrak E$ of a metric graph $\Omega$ is an operator $C^*$-algebra defined by the dynamical system which describes the propagation of waves generated by sources supported at the boundary vertices of $\Omega$. This paper describes the canonical block form of the algebra $\mathfrak E$ for an arbitrary compact connected metric graph. Passing to this form is equivalent to constructing a functional model which realizes $\mathfrak E$ as an algebra of continuous matrix-valued functions on its spectrum $\widehat{\mathfrak{E}}$. The results are intended to be used in the inverse problem of recovering the graph from spectral and dynamical boundary data.
Keywords: dynamical system on a metric graph, reachable sets, eikonal $C^*$-algebra, canonical form.
@article{IM2_2022_86_4_a0,
     author = {M. I. Belishev and A. V. Kaplun},
     title = {Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph},
     journal = {Izvestiya. Mathematics },
     pages = {621--666},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. V. Kaplun
TI  - Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 621
EP  - 666
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/
LA  - en
ID  - IM2_2022_86_4_a0
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. V. Kaplun
%T Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph
%J Izvestiya. Mathematics 
%D 2022
%P 621-666
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/
%G en
%F IM2_2022_86_4_a0
M. I. Belishev; A. V. Kaplun. Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 621-666. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/

[1] M. I. Belishev, “Boundary control and tomography of Riemannian manifolds (the BC-method)”, Uspekhi Mat. Nauk, 72:4(436) (2017), 3–66 ; English transl. Russian Math. Surveys, 72:4 (2017), 581–644 | DOI | MR | Zbl | DOI

[2] M. Belishev, “Geometrization of rings as a method for solving inverse problems”, Sobolev spaces in mathematics, Int. Math. Ser. (N. Y.), III, Applications in mathematical physics, Springer, New York, 2009, 5–24 | DOI | MR | Zbl

[3] M. I. Belishev and M. N. Demchenko, “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47 | DOI | MR | Zbl

[4] M. I. Belishev, “Boundary spectral inverse problem on a class of graphs (trees) by the BC-method”, Inverse Problems, 20:3 (2004), 647–672 | DOI | MR | Zbl

[5] M. I. Belishev and A. F. Vakulenko, “Inverse problems on graphs: recovering the tree of strings by the BC-method”, J. Inverse Ill-Posed Probl., 14:1 (2006), 29–46 | DOI | MR | Zbl

[6] M. I. Belishev and N. Wada, “On revealing graph cycles via boundary measurements”, Inverse Problems, 25:10 (2009), 105011 | DOI | MR | Zbl

[7] M. I. Belishev and N. Wada, “A $C^*$-algebra associated with dynamics on a graph of strings”, J. Math. Soc. Japan, 67:3 (2015), 1239–1274 | DOI | MR | Zbl

[8] M. I. Belishev and A. V. Kaplun, “Eikonal algebra on a graph of simple structure”, Eurasian J. Math. Comput. Appl., 6:3 (2018), 4–33

[9] N. B. Vasil'ev, “$C^*$-algebras with finite-dimensional irreducible representations”, Uspekhi Mat. Nauk, 21:1(127) (1966), 135–154 ; English transl. Russian Math. Surveys, 21:1 (1966), 137–155 | MR | Zbl | DOI

[10] P. Niemiec, “Models for subhomogeneous $C^*$-algebras”, Colloq. Math., 166:1 (2021), 75–106 ; arXiv: 1310.5595 | DOI | MR | Zbl

[11] S. Avdonin and P. Kurasov, “Inverse problems for quantum trees”, Inverse Probl. Imaging, 2:1 (2008), 1–21 | DOI | MR | Zbl

[12] S. Avdonin, P. Kurasov, and M. Nowaczyk, “Inverse problems for quantum trees II: recovering matching conditions for star graphs”, Inverse Probl. Imaging, 4:4 (2010), 579–598 | DOI | MR | Zbl

[13] S. Avdonin, G. Leugering, and V. Mikhaylov, “On an inverse problem for tree-like networks of elastic strings”, ZAMM Z. Angew. Math. Mech., 90:2 (2010), 136–150 | DOI | MR | Zbl

[14] P. Kurasov and M. Nowaczyk, “Inverse spectral problem for quantum graphs”, J. Phys. A, 38:22 (2005), 4901–4915 | DOI | MR | Zbl

[15] P. Kurasov and M. Nowaczyk, “Geometric properties of quantum graphs and vertex scattering matrices”, Opuscula Math., 30:3 (2010), 295–309 | DOI | MR | Zbl

[16] P. Kurasov, “Graph Laplacians and topology”, Ark. Mat., 46:1 (2008), 95–111 | DOI | MR | Zbl

[17] M. Nowaczyk, “Inverse spectral problem for quantum graphs with rationally dependent edges”, Operator theory, analysis and mathematical physics, Oper. Theory Adv. Appl., 174, Birkhäuser, Basel, 2007, 105–116 | DOI | MR | Zbl

[18] V. A. Yurko, “On recovering Sturm–Liouville operators on graphs”, Mat. Zametki, 79:4 (2006), 619–630 ; English transl. Math. Notes, 79:4 (2006), 572–582 | DOI | MR | Zbl | DOI

[19] V. A. Yurko, “Inverse spectral problems for differential operators on arbitrary compact graphs”, J. Inverse Ill-Posed Probl., 18:3 (2010), 245–261 | DOI | MR | Zbl

[20] V. A. Yurko, “An inverse problem for higher order differential operators on star-type graphs”, Inverse Problems, 23:3 (2007), 893–903 | DOI | MR | Zbl

[21] G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl

[22] A. V. Kaplun, “Canonical representation of the eikonal algebra on a three-beam star”, Mathematical problems in the theory of wave propagation. Part 51, Zap. Nauchn. Sem. POMI, 506, POMI, St.-Petersburg, 2021, 57–78 (Russian) | MR

[23] M. S. Birman and M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, 2nd ed., rev. and augm., Lan', St.-Petersburg–Moscow–Krasnodar, 2010; English transl. of 1st ed. Math. Appl. (Soviet Ser.), 5, D. Reidel, Dordrecht, 1987 | DOI | MR | Zbl

[24] J. Dixmier, Les $C^*$-algèbres et leurs représentations, Cahiers Scientifiques, XXIX, 2ème éd., Gauthier-Villars, Paris, 1969 ; Russian transl. Nauka, Moscow, 1974 | MR | Zbl | MR | Zbl

[25] G. J. Murphy, $C^*$-algebras and operator theory, Academic Press, Boston, MA, 1990 ; Russian transl. Faktorial, Moscow, 1997 | MR | Zbl

[26] D. V. Korikov, “On unitary invariants of a family of one-dimensional subspaces”, POMI preprints, 2022, 2/2022 (Russian) http://www.pdmi.ras.ru/preprint/2022/pr2022.html

[27] W. Arveson, An invitation to $C^*$-algebras, Grad. Texts in Math., 39, Springer-Verlag, New York–Heidelberg, 1976 | DOI | MR | Zbl

[28] M. A. Naimark, Normed rings, 2nd ed., Nauka, Moscow, 1968 ; English transl. of 1st ed. Wolters-Noordhoff, Groningen, 1970 | MR | Zbl | MR | Zbl