Canonical form of the $C^*$-algebra of eikonals related to a~metric graph
Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 621-666

Voir la notice de l'article provenant de la source Math-Net.Ru

The eikonal algebra $\mathfrak E$ of a metric graph $\Omega$ is an operator $C^*$-algebra defined by the dynamical system which describes the propagation of waves generated by sources supported at the boundary vertices of $\Omega$. This paper describes the canonical block form of the algebra $\mathfrak E$ for an arbitrary compact connected metric graph. Passing to this form is equivalent to constructing a functional model which realizes $\mathfrak E$ as an algebra of continuous matrix-valued functions on its spectrum $\widehat{\mathfrak{E}}$. The results are intended to be used in the inverse problem of recovering the graph from spectral and dynamical boundary data.
Keywords: dynamical system on a metric graph, reachable sets, eikonal $C^*$-algebra, canonical form.
@article{IM2_2022_86_4_a0,
     author = {M. I. Belishev and A. V. Kaplun},
     title = {Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph},
     journal = {Izvestiya. Mathematics },
     pages = {621--666},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. V. Kaplun
TI  - Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 621
EP  - 666
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/
LA  - en
ID  - IM2_2022_86_4_a0
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. V. Kaplun
%T Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph
%J Izvestiya. Mathematics 
%D 2022
%P 621-666
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/
%G en
%F IM2_2022_86_4_a0
M. I. Belishev; A. V. Kaplun. Canonical form of the  $C^*$-algebra of eikonals related to a~metric graph. Izvestiya. Mathematics , Tome 86 (2022) no. 4, pp. 621-666. http://geodesic.mathdoc.fr/item/IM2_2022_86_4_a0/