On a~convex polyhedron in a~regular point system
Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 586-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

Faceting with a ‘filling’. An ideal crystal structure consists of finitely many equal and parallel translational point lattices. In $\mathbb R^3$ it extends unboundedly in all directions. We distinguish in it a finite part situated in a closed convex polyhedron every face of which contains nodes of a translational point lattice involved in the structure not belonging to the same straight line. Such a polyhedron is called a possible faceting of the ideal crystal structure. There are 32 well-known crystal classes, or 32 crystallographic point groups. Among them is the symmetry group of the possible faceting calculated taking account of the nodes of the ideal crystal structure belonging to it. A cyclic subgroup $C_n$ of the symmetry group of any possible faceting has order $n\le 4$ or $n=6$. Faceting without ‘filling’. In this paper we construct two crystal structures in which there are crystal polyhedra whose symmetry groups, calculated without taking account of the nodes of the crystal structure belonging to it, have rotation axes of orders $n=8$ and $n=12$. In both cases, the crystal polyhedron is a right prism of finite height. Without taking account of the internal structure, a possible faceting of a crystal structure in three-dimensional Euclidean space cannot have an axes of rotation of order $n$ satisfying $6$. The proposed constructions are accompanied by a detailed analysis of ideal crystal structures, as well as Delone sets $S$ of type $(r, R)$ in $\mathbb R^2$ and $\mathbb R^3$. In particular, we produce an expanded proof of one of the theorems stated in 2010 at an international conference dedicated to the 120th anniversary of B. N. Delone.
Keywords: lattice, irrational coordinates, regular point system, polyhedron, faceting, order of an axis.
Mots-clés : rational direction, rotation, group
@article{IM2_2022_86_3_a4,
     author = {M. I. Shtogrin},
     title = {On a~convex polyhedron in a~regular point system},
     journal = {Izvestiya. Mathematics },
     pages = {586--619},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a4/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - On a~convex polyhedron in a~regular point system
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 586
EP  - 619
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a4/
LA  - en
ID  - IM2_2022_86_3_a4
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T On a~convex polyhedron in a~regular point system
%J Izvestiya. Mathematics 
%D 2022
%P 586-619
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a4/
%G en
%F IM2_2022_86_3_a4
M. I. Shtogrin. On a~convex polyhedron in a~regular point system. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 586-619. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a4/

[1] A. K. Boldyrev, Crystallography, 3rd ed., ONTI Gorgeonefteizdat, Leningrad–Moscow–Groznyi–Novosibirsk, 1934 (Russian)

[2] Yu. G. Zagal'skaya and G. P. Litvinskaya, Geometric crystallography, Moscow Univ., Moscow, 1973 (Russian)

[3] D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie, Grundlehren Math. Wiss., 37, J. Springer, Berlin, 1932 ; English transl. Geometry and the imagination, Chelsea Publishing, New York, 1952 | MR | Zbl | Zbl

[4] B. N. Delone, N. N. Padurov, and A. D. Aleksandrov, Mathematical fundamentals of the structural analysis of crystals, ONTI–GTTI, Moscow–Leningrad, 1934 (Russian) | Zbl

[5] A. V. Shubnikov and V. A. Koptsik, Symmetry in science and art, Nauka, Moscow, 1972 (Russian)

[6] International tables for X-ray crystallography, v. 1, eds. N. F. M. Henry and K. Lonsdale, Kynoch Press, Birmingham, UK, 1952

[7] K. L. Novoselov, Fundamentals of geometric crystallography, Textbook, Tomsk Polytechn. Univ., Tomsk, 2015 (Russian)

[8] Yu. I. Sirotin and M. P. Shaskol'skaya, Fundamentals of crystallophysics, Nauka, Moscow, 1979 (Russian)

[9] G. B. Bokii, “The number of physically different simple crystal forms”, Trudy Lab. Crystallography AN SSSR, 1940, no. 2, 13–37 (Russian)

[10] A. V. Gadolin, “Memoire sur la déduction d'un seul principe de tous les systèmes cristallographiques avec leurs subdivisions”, Zapiski Imper. St.-Petersburg Mineralog. Ob-va. Ser. 2, IV, St.-Petersburg, Imper. Akad. Nauk, 1869, 112–200; \nofrills French transl., Acta Soc. Sci. Fennicae, IX (1871), 1–73

[11] R. V. Galiulin, “Holohedral varieties of simple forms of crystals”, Kristallografiya, 23 (1978), 1125–1133 ; \nofrills English transl. in Soviet Phys. Cryst., 23 (1978), 635–641 | MR | Zbl

[12] I. I. Shafranovskii, Lectures on the crystallomorphology of minerals, L'vov Univ., L'vov, 1960 (Russian)

[13] R. V. Galiulin, Crystallographic geometry, 3rd ed., Librokom, Moscow, 2009 (Russian)

[14] N. P. Dolbilin, “Parallelohedra: a retrospective and new results”, Trudy Moskov. Mat. Obstva, 73:2 (2012), 259–276 ; \nofrills English transl. in Trans. Moscow Math. Soc., 73 (2012), 207–220 | Zbl | DOI | MR

[15] S. S. Ryshkov, Fundamentals of the theory of point lattices and Delone systems, Mekh.-Mat. Fakult. Moscow Univ., Moscow, 2014 (Russian)

[16] M. I. Shtogrin, “On rational directions in a planar lattice”, Chebyshev. Sbornik, 16:2 (2015), 273–281 (Russian) | MR | Zbl

[17] N. Dolbilin, A. Garber, U. Leopold, E. Schulte, and M. Senechal, “On the regularity radius of Delone sets in $\mathbb R^3$”, Discrete Comput. Geom., 66:3 (2021), 996–1024 | DOI | MR | Zbl

[18] B. N. Delone and M. I. Stogrin, “Simplified proof of the Schonflies theorem”, Dokl. Akad. Nauk SSSR, 219 (1974), 95–98 ; \nofrills English transl. in Soviet Phys. Dokl., 19:6 (1974), 727–729 | MR | Zbl

[19] N. P. Dolbilin, “A criterion of a crystal and locally antipodal Delone sets”, Vestnik Chelyabinsk Univ., 17 (2015), 6–17 (Russian) | MR

[20] B. Delaunay, “Sur la sphère vide. A la mémoire de Georges Voronoï”, Izv. Akad. Nauk SSSR. Ser. VII. Otdel. Mat. Estestv. Nauk, 1934, no. 6, 793–800 | Zbl

[21] N. P. Dolbilin and A. N. Magazinov, “Uniqueness theorem for locally antipodal Delaunay sets”, Trudy MIAN, 294 (2016), 230–236 ; English transl. Proc. Steklov Inst. Math., 294 (2016), 215–221 | MR | Zbl | DOI

[22] M. Shtogrin, “On bounding the order of an axis of a spider in a locally regular Delone system”, Abstract of a talk, Geometry, Topology, Algebra and Number Theory, Applications, The International Conference dedicated to the 120-th anniversary of Boris Nikolaevich Delone (1890–1980). Abstracts (Moscow 2010), Steklov Math. Inst., Moscow, 2010, 168–169 (Russian)

[23] N. P. Dolbilin, “Delone sets in $\mathbb R^3$ with $2R$-regularity conditions”, Trudy MIAN, 302 (2018), 176–201 ; English transl. Proc. Steklov Inst. Math., 302 (2018), 161–185 | DOI | MR | Zbl | DOI

[24] N. P. Dolbilin, “From local identity to global order”, Discrete Mathematics and its Applications, Proc. XIII Int. O. B. Lupanov Seminar (Moscow 2019), Mekh.-Mat. Fakult. Moscow Univ., Moscow, 2019, 13–22 (Russian)

[25] N. Dolbilin, “Local groups in Delone sets”, Numerical geometry, grid generation and scientific computing (Moscow 2020), Lect. Notes Comput. Sci. Eng., 143, Springer, Cham, 2021, 3–11 | DOI | Zbl

[26] N. P. Dolbilin and M. I. Shtogrin, “On the crystallographicity of local groups in Delone sets in the Euclidean plane”, Zh. Vych. Mat. Mat. Fiz., 62:4 (2022) (to appear) (Russian)

[27] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points”, Dokl. Akad. Nauk SSSR, 227:1 (1976), 19–21 ; English transl. Soviet Math. Dokl., 17:2 (1976), 319–322 | MR | Zbl

[28] N. P. Dolbilin, “Local properties of discrete regular systems”, Dokl. Akad. Nauk SSSR, 230:3 (1976), 516–519 ; English transl. Soviet Math. Dokl., 17:5 (1977), 1333–1337 | MR | Zbl

[29] E. A. Lord, A. L. Mackay, and S. Ranganathan, New geometries for new materials, Cambridge Univ. Press, Cambridge, 2006 | Zbl

[30] S. P. Novikov and A. T. Fomenko, Basic elements of differential geometry and topology, Nauka, Moscow, 1987 ; English transl. Math. Appl. (Soviet Ser.), Kluwer, Dordrecht, 60 | MR | Zbl | DOI | MR | Zbl

[31] Le Tu Quoc Thang, S. A. Piunikhin, and V. A. Sadov, “The geometry of quasicrystals”, Uspekhi Mat. Nauk, 48:1 (1993), 41–102 ; English transl. Russian Math. Surveys, 48:1 (1993), 37–100 | MR | Zbl | DOI