Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_3_a4, author = {M. I. Shtogrin}, title = {On a~convex polyhedron in a~regular point system}, journal = {Izvestiya. Mathematics }, pages = {586--619}, publisher = {mathdoc}, volume = {86}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a4/} }
M. I. Shtogrin. On a~convex polyhedron in a~regular point system. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 586-619. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a4/
[1] A. K. Boldyrev, Crystallography, 3rd ed., ONTI Gorgeonefteizdat, Leningrad–Moscow–Groznyi–Novosibirsk, 1934 (Russian)
[2] Yu. G. Zagal'skaya and G. P. Litvinskaya, Geometric crystallography, Moscow Univ., Moscow, 1973 (Russian)
[3] D. Hilbert and S. Cohn-Vossen, Anschauliche Geometrie, Grundlehren Math. Wiss., 37, J. Springer, Berlin, 1932 ; English transl. Geometry and the imagination, Chelsea Publishing, New York, 1952 | MR | Zbl | Zbl
[4] B. N. Delone, N. N. Padurov, and A. D. Aleksandrov, Mathematical fundamentals of the structural analysis of crystals, ONTI–GTTI, Moscow–Leningrad, 1934 (Russian) | Zbl
[5] A. V. Shubnikov and V. A. Koptsik, Symmetry in science and art, Nauka, Moscow, 1972 (Russian)
[6] International tables for X-ray crystallography, v. 1, eds. N. F. M. Henry and K. Lonsdale, Kynoch Press, Birmingham, UK, 1952
[7] K. L. Novoselov, Fundamentals of geometric crystallography, Textbook, Tomsk Polytechn. Univ., Tomsk, 2015 (Russian)
[8] Yu. I. Sirotin and M. P. Shaskol'skaya, Fundamentals of crystallophysics, Nauka, Moscow, 1979 (Russian)
[9] G. B. Bokii, “The number of physically different simple crystal forms”, Trudy Lab. Crystallography AN SSSR, 1940, no. 2, 13–37 (Russian)
[10] A. V. Gadolin, “Memoire sur la déduction d'un seul principe de tous les systèmes cristallographiques avec leurs subdivisions”, Zapiski Imper. St.-Petersburg Mineralog. Ob-va. Ser. 2, IV, St.-Petersburg, Imper. Akad. Nauk, 1869, 112–200; \nofrills French transl., Acta Soc. Sci. Fennicae, IX (1871), 1–73
[11] R. V. Galiulin, “Holohedral varieties of simple forms of crystals”, Kristallografiya, 23 (1978), 1125–1133 ; \nofrills English transl. in Soviet Phys. Cryst., 23 (1978), 635–641 | MR | Zbl
[12] I. I. Shafranovskii, Lectures on the crystallomorphology of minerals, L'vov Univ., L'vov, 1960 (Russian)
[13] R. V. Galiulin, Crystallographic geometry, 3rd ed., Librokom, Moscow, 2009 (Russian)
[14] N. P. Dolbilin, “Parallelohedra: a retrospective and new results”, Trudy Moskov. Mat. Obstva, 73:2 (2012), 259–276 ; \nofrills English transl. in Trans. Moscow Math. Soc., 73 (2012), 207–220 | Zbl | DOI | MR
[15] S. S. Ryshkov, Fundamentals of the theory of point lattices and Delone systems, Mekh.-Mat. Fakult. Moscow Univ., Moscow, 2014 (Russian)
[16] M. I. Shtogrin, “On rational directions in a planar lattice”, Chebyshev. Sbornik, 16:2 (2015), 273–281 (Russian) | MR | Zbl
[17] N. Dolbilin, A. Garber, U. Leopold, E. Schulte, and M. Senechal, “On the regularity radius of Delone sets in $\mathbb R^3$”, Discrete Comput. Geom., 66:3 (2021), 996–1024 | DOI | MR | Zbl
[18] B. N. Delone and M. I. Stogrin, “Simplified proof of the Schonflies theorem”, Dokl. Akad. Nauk SSSR, 219 (1974), 95–98 ; \nofrills English transl. in Soviet Phys. Dokl., 19:6 (1974), 727–729 | MR | Zbl
[19] N. P. Dolbilin, “A criterion of a crystal and locally antipodal Delone sets”, Vestnik Chelyabinsk Univ., 17 (2015), 6–17 (Russian) | MR
[20] B. Delaunay, “Sur la sphère vide. A la mémoire de Georges Voronoï”, Izv. Akad. Nauk SSSR. Ser. VII. Otdel. Mat. Estestv. Nauk, 1934, no. 6, 793–800 | Zbl
[21] N. P. Dolbilin and A. N. Magazinov, “Uniqueness theorem for locally antipodal Delaunay sets”, Trudy MIAN, 294 (2016), 230–236 ; English transl. Proc. Steklov Inst. Math., 294 (2016), 215–221 | MR | Zbl | DOI
[22] M. Shtogrin, “On bounding the order of an axis of a spider in a locally regular Delone system”, Abstract of a talk, Geometry, Topology, Algebra and Number Theory, Applications, The International Conference dedicated to the 120-th anniversary of Boris Nikolaevich Delone (1890–1980). Abstracts (Moscow 2010), Steklov Math. Inst., Moscow, 2010, 168–169 (Russian)
[23] N. P. Dolbilin, “Delone sets in $\mathbb R^3$ with $2R$-regularity conditions”, Trudy MIAN, 302 (2018), 176–201 ; English transl. Proc. Steklov Inst. Math., 302 (2018), 161–185 | DOI | MR | Zbl | DOI
[24] N. P. Dolbilin, “From local identity to global order”, Discrete Mathematics and its Applications, Proc. XIII Int. O. B. Lupanov Seminar (Moscow 2019), Mekh.-Mat. Fakult. Moscow Univ., Moscow, 2019, 13–22 (Russian)
[25] N. Dolbilin, “Local groups in Delone sets”, Numerical geometry, grid generation and scientific computing (Moscow 2020), Lect. Notes Comput. Sci. Eng., 143, Springer, Cham, 2021, 3–11 | DOI | Zbl
[26] N. P. Dolbilin and M. I. Shtogrin, “On the crystallographicity of local groups in Delone sets in the Euclidean plane”, Zh. Vych. Mat. Mat. Fiz., 62:4 (2022) (to appear) (Russian)
[27] B. N. Delone, N. P. Dolbilin, M. I. Shtogrin, and R. V. Galiulin, “A local criterion for regularity of a system of points”, Dokl. Akad. Nauk SSSR, 227:1 (1976), 19–21 ; English transl. Soviet Math. Dokl., 17:2 (1976), 319–322 | MR | Zbl
[28] N. P. Dolbilin, “Local properties of discrete regular systems”, Dokl. Akad. Nauk SSSR, 230:3 (1976), 516–519 ; English transl. Soviet Math. Dokl., 17:5 (1977), 1333–1337 | MR | Zbl
[29] E. A. Lord, A. L. Mackay, and S. Ranganathan, New geometries for new materials, Cambridge Univ. Press, Cambridge, 2006 | Zbl
[30] S. P. Novikov and A. T. Fomenko, Basic elements of differential geometry and topology, Nauka, Moscow, 1987 ; English transl. Math. Appl. (Soviet Ser.), Kluwer, Dordrecht, 60 | MR | Zbl | DOI | MR | Zbl
[31] Le Tu Quoc Thang, S. A. Piunikhin, and V. A. Sadov, “The geometry of quasicrystals”, Uspekhi Mat. Nauk, 48:1 (1993), 41–102 ; English transl. Russian Math. Surveys, 48:1 (1993), 37–100 | MR | Zbl | DOI