Outer billiards outside regular polygons: tame case
Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 508-559.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the periodicity problem, that is, the existence of an aperiodic point and fullness of measure of the set of periodic points for outer billiards outside regular $n$-gons. The lattice cases $n=3,4,6$ are trivial: no aperiodic points exist and the set of periodic points is of full measure. The cases $n=5,10,8,12$ (and only these cases) are regarded as tame. The periodicity problems were solved for $n=5$ in a breakthrough paper by Tabachnikov, who pioneered a renormalization-scheme method for studying the arising self-similar structures. The case $n=10$ is similar to $n=5$ and was studied earlier by the present author. The present paper is devoted to the remaining cases $n=8,12$. We establish the existence of an aperiodic orbit in outer billiards outside regular octagons and dodecagons and prove that almost all trajectories of these outer billiards are periodic. In the regular dodecagon case we give a rigorous computer-assisted proof. We establish equivalence between the outer billiards outside a regular $n$-gon and a regular $n/2$-gon, where $n$ is even and $n/2$ is odd. Our investigation is based on Tabachnikov's renormalization scheme.
Keywords: aperiodic point, piecewise isometry, first return map, renormalization scheme.
Mots-clés : outer billiard
@article{IM2_2022_86_3_a2,
     author = {Ph. D. Rukhovich},
     title = {Outer billiards outside regular polygons: tame case},
     journal = {Izvestiya. Mathematics },
     pages = {508--559},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a2/}
}
TY  - JOUR
AU  - Ph. D. Rukhovich
TI  - Outer billiards outside regular polygons: tame case
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 508
EP  - 559
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a2/
LA  - en
ID  - IM2_2022_86_3_a2
ER  - 
%0 Journal Article
%A Ph. D. Rukhovich
%T Outer billiards outside regular polygons: tame case
%J Izvestiya. Mathematics 
%D 2022
%P 508-559
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a2/
%G en
%F IM2_2022_86_3_a2
Ph. D. Rukhovich. Outer billiards outside regular polygons: tame case. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 508-559. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a2/

[1] F. D. Rukhovich, “Outer billiards outside a regular octagon: periodicity of almost all orbits and existence of an aperiodic orbit”, Dokl. Ross. Akad. Nauk, 481:3 (2018), 243–246 ; English transl. Dokl. Math., 98:1 (2018), 334–337 | DOI | Zbl | DOI

[2] F. D. Rukhovich, “Outer billiards outside a regular dodecagon”, Dokl. Ross. Akad. Nauk, 485:4 (2019), 415–421 ; English transl. Dokl. Math., 99:2 (2019), 189–194 | DOI | Zbl | DOI

[3] J. Moser, “Is the solar system stable?”, Math. Intelligencer, 1:2 (1978), 65–71 | DOI | MR

[4] S. Tabachnikov, “Dual billiards”, Uspekhi Mat. Nauk, 48:6(294) (1993), 75–102 ; English transl. Russian Math. Surveys, 48:6 (1993), 81–109 | MR | Zbl | DOI

[5] R. E. Schwartz, Outer billiards on kites, Ann. of Math. Stud., 171, Princeton Univ. Press, Princeton, NJ, 2009 | DOI | MR | Zbl

[6] D. Dolgopyat and B. Fayad, “Unbounded orbits for semicircular outer billiard”, Ann. Henri Poincaré, 10:2 (2009), 357–375 | DOI | MR | Zbl

[7] F. Vivaldi and A. V. Shaidenko, “Global stability of a class of discontinuous dual billiards”, Comm. Math. Phys., 110:4 (1987), 625–640 | DOI | MR | Zbl

[8] R. Kołodziej, “The antibilliard outside a polygon”, Bull. Polish Acad. Sci. Math., 37:1-6 (1989), 163–168 | MR | Zbl

[9] E. Gutkin and N. Simanyi, “Dual polygonal billiards and necklace dynamics”, Comm. Math. Phys., 143:3 (1992), 431–449 | DOI | MR | Zbl

[10] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005 ; Russian transl. SRC ‘Regular and chaotic dynamics’, Institute of computer studies, Moscow–Izhevsk, 2011 | DOI | MR | Zbl

[11] N. Bedaride and J. Cassaigne, “Outer billiards outside regular polygons”, J. Lond. Math. Soc. (2), 84:2 (2011), 303–324 ; (2011), arXiv: 0912.5263 | DOI | MR | Zbl

[12] N. Bedaride and J. Cassaigne, Outer billiards outside regular polygons, 2011, arXiv: 0912.5263

[13] F. D. Rukhovich, “Outer billiards outside a regular decagon: periodicity of almost all orbits and existence of an aperiodic orbit”, Chebyshevskii Sb., 20:2 (2019), 406–441 (Russian) | DOI | MR | Zbl

[14] J. H. Lowenstein and F. Vivaldi, “Renormalization of one-parameter families of piecewise isometries”, Dyn. Syst., 31:4 (2016), 393–465 | DOI | MR | Zbl

[15] J. H. Lowenstein and F. Vivaldi, “Renormalizable two-parameter piecewise isometries”, Chaos, 26:6 (2016), 063119 | DOI | MR | Zbl

[16] R. E. Schwartz, The plaid model, Ann. of Math. Stud., 198, Princeton Univ. Press, Princeton, NJ, 2019 | DOI | MR | Zbl

[17] M. Boshernitzan, G. Galperin, T. Krüger, and S. Troubetzkoy, “Periodic billiard orbits are dense in rational polygons”, Trans. Amer. Math. Soc., 350:9 (1998), 3523–3535 | DOI | MR | Zbl

[18] E. Gutkin, “Billiards in polygons: survey of recent results”, J. Statist. Phys., 83:1-2 (1996), 7–26 | DOI | MR | Zbl

[19] P. Ashwin, A. Goetz, P. Peres, and A. Rodrigues, “Embeddings of interval exchange transformations into planar piecewise isometries”, Ergodic Theory Dynam. Systems, 40:5 (2020), 1153–1179 | DOI | MR | Zbl

[20] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, eds. V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[21] S. Tabachnikov, “On the dual billiard problem”, Adv. Math., 115:2 (1995), 221–249 | DOI | MR | Zbl

[22] R. E. Schwartz, Outer billiards, arithmetic graph and the octagon, 2010, arXiv: 1006.2782

[23] A. Goetz and G. Poggiaspalla, “Rotations by $\pi/7$”, Nonlinearity, 17:5 (2004), 1787–1802 | DOI | MR | Zbl