Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_3_a2, author = {Ph. D. Rukhovich}, title = {Outer billiards outside regular polygons: tame case}, journal = {Izvestiya. Mathematics }, pages = {508--559}, publisher = {mathdoc}, volume = {86}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a2/} }
Ph. D. Rukhovich. Outer billiards outside regular polygons: tame case. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 508-559. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a2/
[1] F. D. Rukhovich, “Outer billiards outside a regular octagon: periodicity of almost all orbits and existence of an aperiodic orbit”, Dokl. Ross. Akad. Nauk, 481:3 (2018), 243–246 ; English transl. Dokl. Math., 98:1 (2018), 334–337 | DOI | Zbl | DOI
[2] F. D. Rukhovich, “Outer billiards outside a regular dodecagon”, Dokl. Ross. Akad. Nauk, 485:4 (2019), 415–421 ; English transl. Dokl. Math., 99:2 (2019), 189–194 | DOI | Zbl | DOI
[3] J. Moser, “Is the solar system stable?”, Math. Intelligencer, 1:2 (1978), 65–71 | DOI | MR
[4] S. Tabachnikov, “Dual billiards”, Uspekhi Mat. Nauk, 48:6(294) (1993), 75–102 ; English transl. Russian Math. Surveys, 48:6 (1993), 81–109 | MR | Zbl | DOI
[5] R. E. Schwartz, Outer billiards on kites, Ann. of Math. Stud., 171, Princeton Univ. Press, Princeton, NJ, 2009 | DOI | MR | Zbl
[6] D. Dolgopyat and B. Fayad, “Unbounded orbits for semicircular outer billiard”, Ann. Henri Poincaré, 10:2 (2009), 357–375 | DOI | MR | Zbl
[7] F. Vivaldi and A. V. Shaidenko, “Global stability of a class of discontinuous dual billiards”, Comm. Math. Phys., 110:4 (1987), 625–640 | DOI | MR | Zbl
[8] R. Kołodziej, “The antibilliard outside a polygon”, Bull. Polish Acad. Sci. Math., 37:1-6 (1989), 163–168 | MR | Zbl
[9] E. Gutkin and N. Simanyi, “Dual polygonal billiards and necklace dynamics”, Comm. Math. Phys., 143:3 (1992), 431–449 | DOI | MR | Zbl
[10] S. Tabachnikov, Geometry and billiards, Stud. Math. Libr., 30, Amer. Math. Soc., Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005 ; Russian transl. SRC ‘Regular and chaotic dynamics’, Institute of computer studies, Moscow–Izhevsk, 2011 | DOI | MR | Zbl
[11] N. Bedaride and J. Cassaigne, “Outer billiards outside regular polygons”, J. Lond. Math. Soc. (2), 84:2 (2011), 303–324 ; (2011), arXiv: 0912.5263 | DOI | MR | Zbl
[12] N. Bedaride and J. Cassaigne, Outer billiards outside regular polygons, 2011, arXiv: 0912.5263
[13] F. D. Rukhovich, “Outer billiards outside a regular decagon: periodicity of almost all orbits and existence of an aperiodic orbit”, Chebyshevskii Sb., 20:2 (2019), 406–441 (Russian) | DOI | MR | Zbl
[14] J. H. Lowenstein and F. Vivaldi, “Renormalization of one-parameter families of piecewise isometries”, Dyn. Syst., 31:4 (2016), 393–465 | DOI | MR | Zbl
[15] J. H. Lowenstein and F. Vivaldi, “Renormalizable two-parameter piecewise isometries”, Chaos, 26:6 (2016), 063119 | DOI | MR | Zbl
[16] R. E. Schwartz, The plaid model, Ann. of Math. Stud., 198, Princeton Univ. Press, Princeton, NJ, 2019 | DOI | MR | Zbl
[17] M. Boshernitzan, G. Galperin, T. Krüger, and S. Troubetzkoy, “Periodic billiard orbits are dense in rational polygons”, Trans. Amer. Math. Soc., 350:9 (1998), 3523–3535 | DOI | MR | Zbl
[18] E. Gutkin, “Billiards in polygons: survey of recent results”, J. Statist. Phys., 83:1-2 (1996), 7–26 | DOI | MR | Zbl
[19] P. Ashwin, A. Goetz, P. Peres, and A. Rodrigues, “Embeddings of interval exchange transformations into planar piecewise isometries”, Ergodic Theory Dynam. Systems, 40:5 (2020), 1153–1179 | DOI | MR | Zbl
[20] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, eds. V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[21] S. Tabachnikov, “On the dual billiard problem”, Adv. Math., 115:2 (1995), 221–249 | DOI | MR | Zbl
[22] R. E. Schwartz, Outer billiards, arithmetic graph and the octagon, 2010, arXiv: 1006.2782
[23] A. Goetz and G. Poggiaspalla, “Rotations by $\pi/7$”, Nonlinearity, 17:5 (2004), 1787–1802 | DOI | MR | Zbl