On Jutila's integral in the circle problem
Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 413-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a ‘correlation’ function $\mathcal{K}_{P} = \mathcal{K}_{P}(T;H,U)$ of the error term $P(t)$ in the circle problem, that is, the integral of the product $P(t)P(t+U)$ over the interval $(T,T+H]$, $1\,{\le}\, U, H\,{\le}\, T$. The case of small $U$, $1\le U\ll \sqrt{T}$, was in essence studied by Jutila in 1984. It turns out that, for all these $U$ and sufficiently large $H$, $\mathcal{K}_{P}$ attains its maximum possible value. In this paper we study the case of ‘large’ $U$, $\sqrt{T}\ll U\le T$, when the behaviour of $\mathcal{K}_{P}$ becomes more complicated. In particular, we prove that the correlation function may be positive and negative of maximally large modulus as well as having very small modulus on sets of values of $U$ of positive measure.
Keywords: circle problem, correlation function, simultaneous approximations.
Mots-clés : Jutila's conjecture, Jutila's formula
@article{IM2_2022_86_3_a0,
     author = {M. A. Korolev and D. A. Popov},
     title = {On {Jutila's} integral in the circle problem},
     journal = {Izvestiya. Mathematics },
     pages = {413--455},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/}
}
TY  - JOUR
AU  - M. A. Korolev
AU  - D. A. Popov
TI  - On Jutila's integral in the circle problem
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 413
EP  - 455
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/
LA  - en
ID  - IM2_2022_86_3_a0
ER  - 
%0 Journal Article
%A M. A. Korolev
%A D. A. Popov
%T On Jutila's integral in the circle problem
%J Izvestiya. Mathematics 
%D 2022
%P 413-455
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/
%G en
%F IM2_2022_86_3_a0
M. A. Korolev; D. A. Popov. On Jutila's integral in the circle problem. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 413-455. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/

[1] A. Ivic̀ and Wenguang Zhai, “On the Dirichlet divisor problem in short intervals”, Ramanujan J., 33:3 (2014), 447–465 | DOI | MR | Zbl

[2] M. Jutila, “On the divisor problem for short intervals”, Ann. Univ. Turku. Ser. A I, 186 (1984), 23–30 | MR | Zbl

[3] D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Uspekhi Mat. Nauk, 74:5(449) (2019), 145–162 ; English transl. Russian Math. Surveys, 74:5 (2019), 909–925 | DOI | MR | Zbl | DOI

[4] W. G. Nowak, “Lattice points in a circle: an improved mean-square asymptotics”, Acta Arith., 113:3 (2004), 259–272 | DOI | MR | Zbl

[5] Kai-Man Tsang, “Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function”, Sci. China Math., 53:9 (2010), 2561–2572 | DOI | MR | Zbl

[6] G. M. Fikhtengol'ts, A course of differential and integral calculus, v. 1, 6th ed., Nauka, Moscow, 1966 (Russian); German transl. of 1st ed. G. M. Fichtenholz, Differential- und Integralrechnung, v. I, Hochschulbücher für Math., 61, 12. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1986 | MR | Zbl

[7] A. Ivić, The Riemann zeta-function. Theory and applications, Reprint of the 1985 original, Dover Publ., Mineola, NY, 2003 | MR | Zbl

[8] W. Sierpinski, “Sur la sommation de la série $\sum_{a\le b}\tau(n)f(n)$, oú $\tau(n)$ signifie le nombre de décompositions du nombre $n$ en une somme de deux carrés de nombres entiers (in Polish, French summary)”, Prace Mat. Fiz., 18 (1908), 1–59 | Zbl

[9] M. Kühleitner, “On a question of A. Schinzel concerning the sum $\sum_{n\le x}(r(n))^{2}$”, Österreichisch-Ungarisch-Slowakisches Kolloquium über Zahlentheorie (Maria Trost 1992), Grazer Math. Ber., 318, Karl-Franzens-Univ. Graz, Graz, 1993, 63–67 | MR | Zbl

[10] F. Chamizo, “Correlated sums of $r(n)$”, J. Math. Soc. Japan, 51:1 (1999), 237–252 | DOI | MR | Zbl

[11] A. Selberg, On the remainder term in the lattice point problem of the circle http://publications.ias.edu/selberg/section/2494

[12] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415 | DOI | MR | Zbl

[13] K. Chandrasekharan, Arithmetical functions, Grundlehren Math. Wiss., 167, Springer-Verlag, New York–Berlin, 1970 ; Russian transl. Nauka, Moscow, 1975 | DOI | MR | Zbl | MR | Zbl

[14] A. A. Karatsuba, Basic analytic number theory, 2nd ed., Nauka, Moscow, 1983 ; English transl. Springer-Verlag, Berlin, 1993 | MR | DOI | MR | Zbl

[15] A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, Fizmatlit, Moscow, 1994 ; English transl. de Gruyter Exp. Math., 5, Walter de Gruyter, Berlin, 1992 | MR | Zbl | DOI | MR | Zbl