Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_3_a0, author = {M. A. Korolev and D. A. Popov}, title = {On {Jutila's} integral in the circle problem}, journal = {Izvestiya. Mathematics }, pages = {413--455}, publisher = {mathdoc}, volume = {86}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/} }
M. A. Korolev; D. A. Popov. On Jutila's integral in the circle problem. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 413-455. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/
[1] A. Ivic̀ and Wenguang Zhai, “On the Dirichlet divisor problem in short intervals”, Ramanujan J., 33:3 (2014), 447–465 | DOI | MR | Zbl
[2] M. Jutila, “On the divisor problem for short intervals”, Ann. Univ. Turku. Ser. A I, 186 (1984), 23–30 | MR | Zbl
[3] D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Uspekhi Mat. Nauk, 74:5(449) (2019), 145–162 ; English transl. Russian Math. Surveys, 74:5 (2019), 909–925 | DOI | MR | Zbl | DOI
[4] W. G. Nowak, “Lattice points in a circle: an improved mean-square asymptotics”, Acta Arith., 113:3 (2004), 259–272 | DOI | MR | Zbl
[5] Kai-Man Tsang, “Recent progress on the Dirichlet divisor problem and the mean square of the Riemann zeta-function”, Sci. China Math., 53:9 (2010), 2561–2572 | DOI | MR | Zbl
[6] G. M. Fikhtengol'ts, A course of differential and integral calculus, v. 1, 6th ed., Nauka, Moscow, 1966 (Russian); German transl. of 1st ed. G. M. Fichtenholz, Differential- und Integralrechnung, v. I, Hochschulbücher für Math., 61, 12. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1986 | MR | Zbl
[7] A. Ivić, The Riemann zeta-function. Theory and applications, Reprint of the 1985 original, Dover Publ., Mineola, NY, 2003 | MR | Zbl
[8] W. Sierpinski, “Sur la sommation de la série $\sum_{a\le b}\tau(n)f(n)$, oú $\tau(n)$ signifie le nombre de décompositions du nombre $n$ en une somme de deux carrés de nombres entiers (in Polish, French summary)”, Prace Mat. Fiz., 18 (1908), 1–59 | Zbl
[9] M. Kühleitner, “On a question of A. Schinzel concerning the sum $\sum_{n\le x}(r(n))^{2}$”, Österreichisch-Ungarisch-Slowakisches Kolloquium über Zahlentheorie (Maria Trost 1992), Grazer Math. Ber., 318, Karl-Franzens-Univ. Graz, Graz, 1993, 63–67 | MR | Zbl
[10] F. Chamizo, “Correlated sums of $r(n)$”, J. Math. Soc. Japan, 51:1 (1999), 237–252 | DOI | MR | Zbl
[11] A. Selberg, On the remainder term in the lattice point problem of the circle http://publications.ias.edu/selberg/section/2494
[12] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415 | DOI | MR | Zbl
[13] K. Chandrasekharan, Arithmetical functions, Grundlehren Math. Wiss., 167, Springer-Verlag, New York–Berlin, 1970 ; Russian transl. Nauka, Moscow, 1975 | DOI | MR | Zbl | MR | Zbl
[14] A. A. Karatsuba, Basic analytic number theory, 2nd ed., Nauka, Moscow, 1983 ; English transl. Springer-Verlag, Berlin, 1993 | MR | DOI | MR | Zbl
[15] A. A. Karatsuba and S. M. Voronin, The Riemann zeta-function, Fizmatlit, Moscow, 1994 ; English transl. de Gruyter Exp. Math., 5, Walter de Gruyter, Berlin, 1992 | MR | Zbl | DOI | MR | Zbl