On Jutila's integral in the circle problem
Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 413-455

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a ‘correlation’ function $\mathcal{K}_{P} = \mathcal{K}_{P}(T;H,U)$ of the error term $P(t)$ in the circle problem, that is, the integral of the product $P(t)P(t+U)$ over the interval $(T,T+H]$, $1\,{\le}\, U, H\,{\le}\, T$. The case of small $U$, $1\le U\ll \sqrt{T}$, was in essence studied by Jutila in 1984. It turns out that, for all these $U$ and sufficiently large $H$, $\mathcal{K}_{P}$ attains its maximum possible value. In this paper we study the case of ‘large’ $U$, $\sqrt{T}\ll U\le T$, when the behaviour of $\mathcal{K}_{P}$ becomes more complicated. In particular, we prove that the correlation function may be positive and negative of maximally large modulus as well as having very small modulus on sets of values of $U$ of positive measure.
Keywords: circle problem, correlation function, simultaneous approximations.
Mots-clés : Jutila's conjecture, Jutila's formula
@article{IM2_2022_86_3_a0,
     author = {M. A. Korolev and D. A. Popov},
     title = {On {Jutila's} integral in the circle problem},
     journal = {Izvestiya. Mathematics },
     pages = {413--455},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/}
}
TY  - JOUR
AU  - M. A. Korolev
AU  - D. A. Popov
TI  - On Jutila's integral in the circle problem
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 413
EP  - 455
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/
LA  - en
ID  - IM2_2022_86_3_a0
ER  - 
%0 Journal Article
%A M. A. Korolev
%A D. A. Popov
%T On Jutila's integral in the circle problem
%J Izvestiya. Mathematics 
%D 2022
%P 413-455
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/
%G en
%F IM2_2022_86_3_a0
M. A. Korolev; D. A. Popov. On Jutila's integral in the circle problem. Izvestiya. Mathematics , Tome 86 (2022) no. 3, pp. 413-455. http://geodesic.mathdoc.fr/item/IM2_2022_86_3_a0/