Birational geometry of varieties fibred into complete intersections of codimension two
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 334-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the birational superrigidity of Fano–Mori fibre spaces $\pi\colon V\to S$ all of whose fibres are complete intersections of type $d_1\cdot d_2$ in the projective space ${\mathbb P}^{d_1+d_2}$ satisfying certain conditions of general position, under the assumption that the fibration $V/S$ is sufficiently twisted over the base (in particular, under the assumption that the $K$-condition holds). The condition of general position for every fibre guarantees that the global log canonical threshold is equal to one. This condition also bounds the dimension of the base $S$ by a constant depending only on the dimension $M$ of the fibre (this constant grows like $M^2/2$ as $M\to\infty$). The fibres and the variety $V$ may have quadratic and bi-quadratic singularities whose rank is bounded below.
Keywords: Fano variety, birational rigidity, linear system, maximal singularity, quadratic singularity, bi-quadratic singularity.
Mots-clés : Mori fibre space, birational map
@article{IM2_2022_86_2_a5,
     author = {A. V. Pukhlikov},
     title = {Birational geometry of varieties fibred into complete intersections of codimension two},
     journal = {Izvestiya. Mathematics },
     pages = {334--411},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birational geometry of varieties fibred into complete intersections of codimension two
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 334
EP  - 411
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a5/
LA  - en
ID  - IM2_2022_86_2_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birational geometry of varieties fibred into complete intersections of codimension two
%J Izvestiya. Mathematics 
%D 2022
%P 334-411
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a5/
%G en
%F IM2_2022_86_2_a5
A. V. Pukhlikov. Birational geometry of varieties fibred into complete intersections of codimension two. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 334-411. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a5/

[1] F. Call, G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | DOI | MR | Zbl

[2] A. V. Pukhlikov, “Birationally rigid Fano fibre spaces. II”, Izv. Math., 79:4 (2015), 809–837 | DOI | DOI | MR | Zbl

[3] A. V. Pukhlikov, “Canonical and log canonical thresholds of multiple projective spaces”, Eur. J. Math., 7:1 (2021), 135–162 ; arXiv: 1906.11802 | DOI | MR | Zbl

[4] A. V. Pukhlikov, “Birationally rigid finite covers of the projective space”, Proc. Steklov Inst. Math., 307 (2019), 232–244 | DOI | DOI | MR | Zbl

[5] A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl

[6] A. V. Pukhlikov, “Birational geometry of singular Fano hypersurfaces of index two”, Manuscripta Math., 161:1-2 (2020), 161–203 | DOI | MR | Zbl

[7] A. V. Pukhlikov, “Birational geometry of singular Fano varieties”, Proc. Steklov Inst. Math., 264 (2009), 159–177 | DOI | MR | Zbl

[8] V. G. Sarkisov, “Birational automorphisms of conic bundles”, Math. USSR-Izv., 17:1 (1981), 177–202 | DOI | MR | Zbl

[9] V. G. Sarkisov, “On conic bundle structures”, Math. USSR-Izv., 20:2 (1983), 355–390 | DOI | MR | Zbl

[10] A. V. Pukhlikov, “Birational geometry of Fano direct products”, Izv. Math., 69:6 (2005), 1225–1255 | DOI | DOI | MR | Zbl

[11] I. A. Cheltsov, K. A. Shramov, “Log canonical thresholds of smooth Fano threefolds”, Russian Math. Surveys, 63:5 (2008), 859–958 | DOI | DOI | MR | Zbl

[12] I. Cheltsov, Jihun Park, Joonyeong Won, “Log canonical thresholds of certain Fano hypersurfaces”, Math. Z., 276:1-2 (2014), 51–79 | DOI | MR | Zbl

[13] Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compos. Math., 150:12 (2014), 2054–2072 | DOI | MR | Zbl

[14] Yu. Prokhorov, C. Shramov, “Jordan property for Cremona groups”, Amer. J. Math., 138:2 (2016), 403–418 | DOI | MR | Zbl

[15] J.-P. Serre, “A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field”, Mosc. Math. J., 9:1 (2009), 183–198 | DOI | MR | Zbl

[16] J.-L. Colliot-Thélène, A. Pirutka, “Cyclic covers that are not stably rational”, Izv. Math., 80:4 (2016), 665–677 | DOI | DOI | MR | Zbl

[17] B. Hassett, A. Kresch, Yu. Tschinkel, “Stable rationality and conic bundles”, Math. Ann., 365:3-4 (2016), 1201–1217 | DOI | MR | Zbl

[18] B. Totaro, “Hypersurfaces that are not stably rational”, J. Amer. Math. Soc., 29:3 (2016), 883–891 | DOI | MR | Zbl

[19] A. Auel, Ch. Böhning, A. Pirutka, “Stable rationality of quadric and cubic surface bundle fourfolds”, Eur. J. Math., 4:3 (2018), 732–760 | DOI | MR | Zbl

[20] B. Hassett, A. Pirutka, Yu. Tschinkel, “A very general quartic double fourfold is not stably rational”, Algebr. Geom., 6:1 (2019), 64–75 | DOI | MR | Zbl

[21] S. Schreieder, “Stably irrational hypersurfaces of small slopes”, J. Amer. Math. Soc., 32:4 (2019), 1171–1199 | DOI | MR | Zbl

[22] J. Nicaise, E. Shinder, “The motivic nearby fiber and degeneration of stable rationality”, Invent. Math., 217:2 (2019), 377–413 | DOI | MR | Zbl

[23] M. Kontsevich, Yu. Tschinkel, “Specialization of birational types”, Invent. Math., 217:2 (2019), 415–432 | DOI | MR | Zbl

[24] V. A. Iskovskih, Yu. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl

[25] I. Krylov, “Birational geometry of del Pezzo fibrations with terminal quotient singularities”, J. Lond. Math. Soc. (2), 97:2 (2018), 222–246 | DOI | MR | Zbl

[26] H. Ahmadinezhad, I. Krylov, Birational rigidity of orbifold degree 2 del Pezzo fibrations, arXiv: 1710.05328

[27] D. Evans, A. V. Pukhlikov, “Birationally rigid complete intersections of high codimension”, Izv. Math., 83:4 (2019), 743–769 | DOI | DOI | MR | Zbl

[28] A. V. Pukhlikov, “Birational geometry of Fano hypersurfaces of index two”, Math. Ann., 366:1-2 (2016), 721–782 | DOI | MR | Zbl

[29] A. V. Pukhlikov, “Birational geometry of algebraic varieties fibred into Fano double spaces”, Izv. Math., 81:3 (2017), 618–644 | DOI | DOI | MR | Zbl

[30] M. M. Grinenko, “Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II”, Sb. Math., 194:5 (2003), 669–695 | DOI | DOI | MR | Zbl

[31] M. M. Grinenko, “Fibrations into del Pezzo surfaces”, Russian Math. Surveys, 61:2 (2006), 255–300 | DOI | DOI | MR | Zbl

[32] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[33] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano complete intersections”, Manuscripta Math., 121:4 (2006), 491–526 | DOI | MR | Zbl

[34] F. Suzuki, “Birational rigidity of complete intersections”, Math. Z., 285:1-2 (2017), 479–492 | DOI | MR | Zbl

[35] A. V. Pukhlikov, “Birationally rigid Fano fibrations”, Izv. Math., 64:3 (2000), 563–581 | DOI | DOI | MR | Zbl

[36] V. A. Iskovskikh, A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds”, J. Math. Sci. (N.Y.), 82:4 (1996), 3528–3613 | DOI | MR | Zbl

[37] A. V. Pukhlikov, “Fiber-wise birational correspondences”, Math. Notes, 68:1 (2000), 103–112 | DOI | DOI | MR | Zbl