The generalized Pl\" ucker--Klein map
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 291-333

Voir la notice de l'article provenant de la source Math-Net.Ru

The intersection of two quadrics is called a biquadric. If we mark a non-singular quadric in the pencil of quadrics through a given biquadric, then the given biquadric is called a marked biquadric. In the classical papers of Plücker and Klein, a Kummer surface was canonically associated with every three-dimensional marked biquadric (that is, with a quadratic line complex provided that the Plücker–Klein quadric is marked). In Reid's thesis, this correspondence was generalized to odd-dimensional marked biquadrics of arbitrary dimension $\geqslant 3$. In this case, a Kummer variety of dimension $g$ corresponds to every biquadric of dimension $2g-1$. Reid only constructed the generalized Plücker–Klein correspondence. This map was not studied later. The present paper is devoted to a partial solution of the problem of creating the corresponding theory.
Keywords: pencil of quadrics, marked biquadric, cosingular biquadrics, Klein variety.
Mots-clés : Plücker–Klein map, quadric, biquadric
@article{IM2_2022_86_2_a4,
     author = {V. A. Krasnov},
     title = {The generalized {Pl\"} {ucker--Klein} map},
     journal = {Izvestiya. Mathematics },
     pages = {291--333},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The generalized Pl\" ucker--Klein map
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 291
EP  - 333
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/
LA  - en
ID  - IM2_2022_86_2_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The generalized Pl\" ucker--Klein map
%J Izvestiya. Mathematics 
%D 2022
%P 291-333
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/
%G en
%F IM2_2022_86_2_a4
V. A. Krasnov. The generalized Pl\" ucker--Klein map. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 291-333. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/