The generalized Pl\" ucker--Klein map
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 291-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

The intersection of two quadrics is called a biquadric. If we mark a non-singular quadric in the pencil of quadrics through a given biquadric, then the given biquadric is called a marked biquadric. In the classical papers of Plücker and Klein, a Kummer surface was canonically associated with every three-dimensional marked biquadric (that is, with a quadratic line complex provided that the Plücker–Klein quadric is marked). In Reid's thesis, this correspondence was generalized to odd-dimensional marked biquadrics of arbitrary dimension $\geqslant 3$. In this case, a Kummer variety of dimension $g$ corresponds to every biquadric of dimension $2g-1$. Reid only constructed the generalized Plücker–Klein correspondence. This map was not studied later. The present paper is devoted to a partial solution of the problem of creating the corresponding theory.
Keywords: pencil of quadrics, marked biquadric, cosingular biquadrics, Klein variety.
Mots-clés : Plücker–Klein map, quadric, biquadric
@article{IM2_2022_86_2_a4,
     author = {V. A. Krasnov},
     title = {The generalized {Pl\"} {ucker--Klein} map},
     journal = {Izvestiya. Mathematics },
     pages = {291--333},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - The generalized Pl\" ucker--Klein map
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 291
EP  - 333
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/
LA  - en
ID  - IM2_2022_86_2_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T The generalized Pl\" ucker--Klein map
%J Izvestiya. Mathematics 
%D 2022
%P 291-333
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/
%G en
%F IM2_2022_86_2_a4
V. A. Krasnov. The generalized Pl\" ucker--Klein map. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 291-333. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a4/

[1] P. Griffiths, J. Harris, Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience [John Wiley Sons], New York, 1978, xii+813 pp. | MR | MR | Zbl | Zbl

[2] J. W. S. Cassels, E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc. Lecture Note Ser., 230, Cambridge Univ. Press, Cambridge, 1996, xiv+219 pp. | DOI | MR | Zbl

[3] I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge Univ. Press, Cambridge, 2012, xii+639 pp. | DOI | MR | Zbl

[4] M. Reid, The complete intersection of two or more quadrics, Ph.D. thesis, Univ. of Cambridge, Cambridge, 1972, 94 pp. http://homepages.warwick.ac.uk/~masda/3folds/

[5] A. N. Tyurin, “On intersections of quadrics”, Russian Math. Surveys, 30:6 (1975), 51–105 | DOI | MR | Zbl

[6] R. Donagi, “Group law on the intersection of two quadrics”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:2 (1980), 217–239 | MR | Zbl

[7] F. Klein, “Zur Theorie der Liniencomplexe des ersten und zweiten Grades”, Math. Ann., 2:2 (1870), 198–226 | DOI | MR | Zbl

[8] C. M. Jessop, A treatise on the line complex, Cambridge Univ. Press, Cambridge, 1903, xv+362 pp. | MR | Zbl

[9] R. W. H. T. Hudson, Kummer's quartic surface, Cambridge Univ. Press, Cambridge, 1905, xi+219 pp. ; Cambridge Math. Lib., Rev. reprint with a foreword by W. Barth, 1990, xxiv+222 pp. | Zbl | MR | Zbl

[10] W. Fulton, J. Harris, Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991, xvi+551 pp. | DOI | MR | Zbl

[11] U. V. Desale, S. Ramanan, “Classification of vector bundles of rank 2 on hyperelliptic curves”, Invent. Math., 38:2 (1976), 161–185 | DOI | MR | Zbl

[12] R. E. Kutz, “Cohen–Macaulay rings and ideal theory in rings of invariants of algebraic groups”, Trans. Amer. Math. Soc., 194 (1974), 115–129 | DOI | MR | Zbl

[13] M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $\overline{M}_{0,n}$”, J. Algebraic Geom., 2:2 (1993), 239–262 | MR | Zbl

[14] P. E. Newstead, “Stable bundles of rank 2 and odd degree over a curve of genus 2”, Topology, 7:3 (1968), 205–215 | DOI | MR | Zbl

[15] M. S. Narasimhan, S. Ramanan, “Moduli of vector bundles on a compact Riemann surface”, Ann. of Math. (2), 89:1 (1969), 14–51 | DOI | MR | Zbl

[16] D. Mumford, Tata lectures on theta, v. II, Progr. Math., 43, Birkhäuser Boston, Inc., Boston, MA, 1984, xiv+272 pp. | DOI | MR | MR | Zbl

[17] S. Mukai, “Curves and symmetric spaces. I”, Amer. J. Math., 117:6 (1995), 1627–1644 | DOI | MR | Zbl

[18] I. Dolgachev, D. Ortland, Point sets in projective spaces and theta functions, Astérisque, 165, Soc. Math. France, Paris, 1988, 210 pp. | MR | Zbl

[19] E. Spanier, “The homology of Kummer manifolds”, Proc. Amer. Math. Soc., 7 (1956), 155–160 | DOI | MR | Zbl

[20] A. Grothendieck, “Sur quelques points d'algèbre homologique”, Tohoku Math. J. (2), 9:2 (1957), 119–221 | DOI | MR | Zbl

[21] Wei-Liang Chow, “On the geometry of algebraic homogeneous spaces”, Ann. of Math. (2), 50 (1949), 32–67 | DOI | MR | Zbl

[22] M. Hall, Jr., The theory of groups, The Macmillan Co., New York, NY, 1959, xiii+434 pp. | MR | Zbl | Zbl

[23] S. Ramanan, “The theory of vector bundles on algebraic curves with some applications”, Moduli spaces and vector bundles, London Math. Soc. Lecture Note Ser., 359, Cambridge Univ. Press, Cambridge, 2009, 165–209 | DOI | MR | Zbl

[24] D. Avritzer, H. Lange, “Moduli spaces of quadratic complexes and their singular surfaces”, Geom. Dedicata, 127 (2007), 177–197 | DOI | MR | Zbl

[25] K. Rohn, “Die verschiedenen Gestalten der Kummer'schen Fläche”, Math. Ann., 18 (1881), 99–159 | DOI | MR | Zbl

[26] W. Barth, I. Nieto, “Abelian surfaces of type $(1,3)$ and surfaces with $16$ skew lines”, J. Algebraic Geom., 3:2 (1994), 173–222 | MR | Zbl

[27] A. Coble, “Point sets and allied Cremona groups. I”, Trans. Amer. Math. Soc., 16:2 (1915), 155–198 | DOI | MR | Zbl

[28] V. A. Krasnov, “Real Segre cubics, Igusa quartics and Kummer quartics”, Izv. Math., 84:3 (2020), 502–544 | DOI | DOI | MR | Zbl

[29] G. van der Geer, “On the geometry of a Siegel modular threefold”, Math. Ann., 260:3 (1982), 317–350 | DOI | MR | Zbl

[30] V. A. Krasnov, “Real Kummer quartics and their Heisenberg invariance”, Izv. Math., 84:1 (2020), 95–145 | DOI | DOI | MR | Zbl