The coloured Tverberg theorem, extensions and new results
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 275-290

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a multiple coloured Tverberg theorem and a balanced coloured Tverberg theorem, applying different methods, tools and ideas. The proof of the first theorem uses a multiple chessboard complex (as configuration space) and the Eilenberg–Krasnoselskii theory of degrees of equivariant maps for non-free group actions. The proof of the second result relies on the high connectivity of the configuration space, established by using discrete Morse theory.
Keywords: Tverberg theorem, chessboard complex
Mots-clés : equivariant map.
@article{IM2_2022_86_2_a3,
     author = {D. Jojic and G. Yu. Panina and R. \v{Z}ivaljevi\'c},
     title = {The coloured {Tverberg} theorem, extensions and new results},
     journal = {Izvestiya. Mathematics },
     pages = {275--290},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a3/}
}
TY  - JOUR
AU  - D. Jojic
AU  - G. Yu. Panina
AU  - R. Živaljević
TI  - The coloured Tverberg theorem, extensions and new results
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 275
EP  - 290
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a3/
LA  - en
ID  - IM2_2022_86_2_a3
ER  - 
%0 Journal Article
%A D. Jojic
%A G. Yu. Panina
%A R. Živaljević
%T The coloured Tverberg theorem, extensions and new results
%J Izvestiya. Mathematics 
%D 2022
%P 275-290
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a3/
%G en
%F IM2_2022_86_2_a3
D. Jojic; G. Yu. Panina; R. Živaljević. The coloured Tverberg theorem, extensions and new results. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 275-290. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a3/