Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an analogue of classical Lie theory in the case of Lie groups and Lie algebras
defined over the algebra of dual numbers. As an application, we study approximate symmetries
of differential equations and construct analogues of Hjelmslev's natural geometry.
Keywords:
dual numbers, Lie theory, Lie theorems, approximate symmetries of differential equations,
Hjelmslev's natural geometry.
@article{IM2_2022_86_2_a2,
author = {V. V. Gorbatsevich},
title = {Foundations of {Lie} theory for~$\mathcal E$-structures and some of its applications},
journal = {Izvestiya. Mathematics },
pages = {252--274},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/}
}
V. V. Gorbatsevich. Foundations of Lie theory for~$\mathcal E$-structures and some of its applications. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/