Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an analogue of classical Lie theory in the case of Lie groups and Lie algebras defined over the algebra of dual numbers. As an application, we study approximate symmetries of differential equations and construct analogues of Hjelmslev's natural geometry.
Keywords: dual numbers, Lie theory, Lie theorems, approximate symmetries of differential equations, Hjelmslev's natural geometry.
@article{IM2_2022_86_2_a2,
     author = {V. V. Gorbatsevich},
     title = {Foundations of {Lie} theory for~$\mathcal E$-structures and some of its applications},
     journal = {Izvestiya. Mathematics },
     pages = {252--274},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 252
EP  - 274
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/
LA  - en
ID  - IM2_2022_86_2_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
%J Izvestiya. Mathematics 
%D 2022
%P 252-274
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/
%G en
%F IM2_2022_86_2_a2
V. V. Gorbatsevich. Foundations of Lie theory for~$\mathcal E$-structures and some of its applications. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/