Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_2_a2, author = {V. V. Gorbatsevich}, title = {Foundations of {Lie} theory for~$\mathcal E$-structures and some of its applications}, journal = {Izvestiya. Mathematics }, pages = {252--274}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/} }
V. V. Gorbatsevich. Foundations of Lie theory for~$\mathcal E$-structures and some of its applications. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/
[1] V. A. Baĭkov, R. K. Gazizov, N. Kh. Ibragimov, “Approximate symmetries”, Math. USSR-Sb., 64:2 (1989), 427–441 | DOI | MR | Zbl
[2] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Perturbation methods in group analysis”, J. Soviet Math., 55:1 (1991), 1450–1490 | DOI | MR | Zbl
[3] V. V. Gorbatsevich, “Foundations of the theory of dual Lie algebras”, Russian Math. (Iz. VUZ), 62:4 (2018), 29–41 | DOI | MR | Zbl
[4] J. Hjelmslev, “Die naturliche Geometrie”, Vier Vortrage, Abh. Math. Sem. Univ. Hamburg, 2:1 (1923), 1–36 | DOI | MR | Zbl
[5] V. V. Gorbatsevich, “Dual and almost-dual homogeneous spaces”, Izv. Math., 83:1 (2019), 20–48 | DOI | DOI | MR | Zbl
[6] V. V. Gorbatsevich, “On geometry of solutions to approximate equations and their symmetries”, Ufa Math. J., 9:2 (2017), 40–54 | DOI | MR | Zbl
[7] M. de León, P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Math. Stud., 158, North-Holland Publishing Co., Amsterdam, 1989, x+483 pp. | MR | Zbl
[8] M. A. Malakhaltsev, “Struktury mnogoobraziya nad algebroi dualnykh chisel na tore”, Tr. geom. sem., 22, Izd-vo Kazanskogo un-ta, Kazan, 1994, 47–62 | MR | Zbl
[9] V. V. Gorbatsevich, “Tensor products of algebras and their applications to the construction of Anosov diffeomorphisms”, Math. Notes, 82:6 (2007), 733–740 | DOI | DOI | MR | Zbl
[10] V. V. Gorbatsevich, “The construction of a simply connected Lie group with a given Lie algebra”, Russian Math. Surveys, 41:3 (1986), 207–208 | DOI | MR | Zbl
[11] G. M. Tuynman, “An elementary proof of Lie's third theorem”, Publ. IRMA Lille, 34 (1994), X1–X4
[12] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, Inc., New York–London, 1982, xvi+416 pp. | MR | MR | Zbl | Zbl
[13] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl
[14] V. V. Gorbatsevich, Corrections and additions to my article “Dual and almost-dual homogeneous spaces”, arXiv: 2007.14303
[15] R. Lavendhomme, Basic concepts of synthetic differential geometry, Transl. from the French, Kluwer Texts Math. Sci., 13, Kluwer Acad. Publ., Dordrecht, 1996, xvi+320 pp. | DOI | MR | Zbl
[16] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl
[17] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–229 | MR | MR | Zbl | Zbl