Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an analogue of classical Lie theory in the case of Lie groups and Lie algebras defined over the algebra of dual numbers. As an application, we study approximate symmetries of differential equations and construct analogues of Hjelmslev's natural geometry.
Keywords: dual numbers, Lie theory, Lie theorems, approximate symmetries of differential equations, Hjelmslev's natural geometry.
@article{IM2_2022_86_2_a2,
     author = {V. V. Gorbatsevich},
     title = {Foundations of {Lie} theory for~$\mathcal E$-structures and some of its applications},
     journal = {Izvestiya. Mathematics },
     pages = {252--274},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 252
EP  - 274
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/
LA  - en
ID  - IM2_2022_86_2_a2
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Foundations of Lie theory for~$\mathcal E$-structures and some of its applications
%J Izvestiya. Mathematics 
%D 2022
%P 252-274
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/
%G en
%F IM2_2022_86_2_a2
V. V. Gorbatsevich. Foundations of Lie theory for~$\mathcal E$-structures and some of its applications. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 252-274. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a2/

[1] V. A. Baĭkov, R. K. Gazizov, N. Kh. Ibragimov, “Approximate symmetries”, Math. USSR-Sb., 64:2 (1989), 427–441 | DOI | MR | Zbl

[2] V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, “Perturbation methods in group analysis”, J. Soviet Math., 55:1 (1991), 1450–1490 | DOI | MR | Zbl

[3] V. V. Gorbatsevich, “Foundations of the theory of dual Lie algebras”, Russian Math. (Iz. VUZ), 62:4 (2018), 29–41 | DOI | MR | Zbl

[4] J. Hjelmslev, “Die naturliche Geometrie”, Vier Vortrage, Abh. Math. Sem. Univ. Hamburg, 2:1 (1923), 1–36 | DOI | MR | Zbl

[5] V. V. Gorbatsevich, “Dual and almost-dual homogeneous spaces”, Izv. Math., 83:1 (2019), 20–48 | DOI | DOI | MR | Zbl

[6] V. V. Gorbatsevich, “On geometry of solutions to approximate equations and their symmetries”, Ufa Math. J., 9:2 (2017), 40–54 | DOI | MR | Zbl

[7] M. de León, P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Math. Stud., 158, North-Holland Publishing Co., Amsterdam, 1989, x+483 pp. | MR | Zbl

[8] M. A. Malakhaltsev, “Struktury mnogoobraziya nad algebroi dualnykh chisel na tore”, Tr. geom. sem., 22, Izd-vo Kazanskogo un-ta, Kazan, 1994, 47–62 | MR | Zbl

[9] V. V. Gorbatsevich, “Tensor products of algebras and their applications to the construction of Anosov diffeomorphisms”, Math. Notes, 82:6 (2007), 733–740 | DOI | DOI | MR | Zbl

[10] V. V. Gorbatsevich, “The construction of a simply connected Lie group with a given Lie algebra”, Russian Math. Surveys, 41:3 (1986), 207–208 | DOI | MR | Zbl

[11] G. M. Tuynman, “An elementary proof of Lie's third theorem”, Publ. IRMA Lille, 34 (1994), X1–X4

[12] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, Inc., New York–London, 1982, xvi+416 pp. | MR | MR | Zbl | Zbl

[13] P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986, xxvi+497 pp. | DOI | MR | MR | Zbl | Zbl

[14] V. V. Gorbatsevich, Corrections and additions to my article “Dual and almost-dual homogeneous spaces”, arXiv: 2007.14303

[15] R. Lavendhomme, Basic concepts of synthetic differential geometry, Transl. from the French, Kluwer Texts Math. Sci., 13, Kluwer Acad. Publ., Dordrecht, 1996, xvi+320 pp. | DOI | MR | Zbl

[16] G. D. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. of Math. (2), 52:3 (1950), 606–636 | DOI | MR | Zbl

[17] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras, v. I, Encyclopaedia Math. Sci., 20, Springer, Berlin, 1993, 95–229 | MR | MR | Zbl | Zbl