On the number of epi-, mono- and homomorphisms of groups
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 243-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the number of homomorphisms from a group $F$ to a group $G$ is divisible by the greatest common divisor of the order of $G$ and the exponent of $F/[F,F]$. We study the question of what can be said about the number of homomorphisms satisfying certain natural conditions like injectivity or surjectivity. A simple non-trivial consequence of our results is the fact that in any finite group the number of generating pairs $(x,y)$ such that $x^3=1=y^5$ is divisible by the greatest common divisor of fifteen and the order of the group $[G,G]\cdot\{g^{15}\mid g\in G\}$.
Keywords: number of homomorphisms, equations in groups, Frobenius' theorem, Solomon's theorem.
@article{IM2_2022_86_2_a1,
     author = {E. K. Brusyanskaya and A. A. Klyachko},
     title = {On the number of epi-, mono- and homomorphisms of  groups},
     journal = {Izvestiya. Mathematics },
     pages = {243--251},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/}
}
TY  - JOUR
AU  - E. K. Brusyanskaya
AU  - A. A. Klyachko
TI  - On the number of epi-, mono- and homomorphisms of  groups
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 243
EP  - 251
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/
LA  - en
ID  - IM2_2022_86_2_a1
ER  - 
%0 Journal Article
%A E. K. Brusyanskaya
%A A. A. Klyachko
%T On the number of epi-, mono- and homomorphisms of  groups
%J Izvestiya. Mathematics 
%D 2022
%P 243-251
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/
%G en
%F IM2_2022_86_2_a1
E. K. Brusyanskaya; A. A. Klyachko. On the number of epi-, mono- and homomorphisms of  groups. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/

[1] G. Frobenius, “Verallgemeinerung des Sylow'schen Satzes”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1895 (1895), 981–993 | Zbl

[2] R. Andreev, A translation of “Verallgemeinerung des Sylow'schen Satzes” by F. G. Frobenius, arXiv: 1608.08813

[3] L. Solomon, “The solution of equations in groups”, Arch. Math. (Basel), 20:3 (1969), 241–247 | DOI | MR | Zbl

[4] S. Iwasaki, “A note on the $n$th roots ratio of a subgroup of a finite group”, J. Algebra, 78:2 (1982), 460–474 | DOI | MR | Zbl

[5] G. Frobenius, “Über einen Fundamentalsatz der Gruppentheorie”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1903 (1903), 987–991 | Zbl

[6] P. Hall, “On a theorem of Frobenius”, Proc. London Math. Soc., 40 (1936), 468–501 | DOI | MR | Zbl

[7] A. Kulakoff, “Einige Bemerkungen zur Arbeit: “On a theorem of Frobenius” von P. Hall”, Matem. sb., 3(45):2 (1938), 403–405 | Zbl

[8] S. K. Sehgal, “On P. Hall's generalisation of a theorem of Frobenius”, Proc. Glasgow Math. Assoc., 5:3 (1962), 97–100 | DOI | MR | Zbl

[9] I. M. Isaacs, “Systems of equations and generalized characters in groups”, Canadian J. Math., 22:5 (1970), 1040–1046 | DOI | MR | Zbl

[10] K. S. Brown, J. Thévenaz, “A generalization of Sylow's third theorem”, J. Algebra, 115:2 (1988), 414–430 | DOI | MR | Zbl

[11] T. Yoshida, “$|{\operatorname{Hom}(A, G)}|$”, J. Algebra, 156:1 (1993), 125–156 | DOI | MR | Zbl

[12] S. P. Strunkov, “On the theory of equations in finite groups”, Izv. Math., 59:6 (1995), 1273–1282 | DOI | MR | Zbl

[13] T. Asai, Yu. Takegahara, “$|{\operatorname{Hom}(A,G)}|$. IV”, J. Algebra, 246:2 (2001), 543–563 | DOI | MR | Zbl

[14] J. Sato, T. Asai, “On the $n$-th roots of a double coset of a finite group”, J. Sch. Sci. Eng. Kinki Univ., 43 (2007), 1–4

[15] A. Amit, U. Vishne, “Characters and solutions to equations in finite groups”, J. Algebra Appl., 10:4 (2011), 675–686 | DOI | MR | Zbl

[16] C. Gordon, F. Rodriguez-Villegas, “On the divisibility of $\#\operatorname{Hom}(\Gamma, G)$ by $|G|$”, J. Algebra, 350:1 (2012), 300–307 ; arXiv: 1105.6066 | DOI | MR | Zbl

[17] T. Asai, N. Chigira, T. Niwasaki, Yu. Takegahara, “On a theorem of P. Hall”, J. Group Theory, 16:1 (2013), 69–80 | DOI | MR | Zbl

[18] A. A. Klyachko, A. A. Mkrtchyan, “How many tuples of group elements have a given property?”, With an appendix by Dmitrii V. Trushin, Internat. J. Algebra Comput., 24:4 (2014), 413–428 ; arXiv: 1205.2824 | DOI | MR | Zbl

[19] A. A. Klyachko, A. A. Mkrtchyan, “Strange divisibility in groups and rings”, Arch. Math., 108:5 (2017), 441–451 ; arXiv: 1506.08967 | DOI | MR | Zbl

[20] E. K. Brusyanskaya, A. A. Klyachko, A. V. Vasil'ev, “What do Frobenius's, Solomon's, and Iwasaki's theorems on divisibility in groups have in common?”, Pacific J. Math., 302:2 (2019), 437–452 ; arXiv: 1806.08870 | DOI | MR | Zbl

[21] A. A. Klyachko, M. A. Ryabtseva, “The dimension of solution sets to systems of equations in algebraic groups”, Israel J. Math., 237:1 (2020), 141–154 ; arXiv: 1903.05236 | DOI | MR | Zbl

[22] R. Brauer, “On a theorem of Frobenius”, Amer. Math. Monthly, 76:1 (1969), 12–15 | DOI | MR | Zbl