Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_2_a1, author = {E. K. Brusyanskaya and A. A. Klyachko}, title = {On the number of epi-, mono- and homomorphisms of groups}, journal = {Izvestiya. Mathematics }, pages = {243--251}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/} }
E. K. Brusyanskaya; A. A. Klyachko. On the number of epi-, mono- and homomorphisms of groups. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/
[1] G. Frobenius, “Verallgemeinerung des Sylow'schen Satzes”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1895 (1895), 981–993 | Zbl
[2] R. Andreev, A translation of “Verallgemeinerung des Sylow'schen Satzes” by F. G. Frobenius, arXiv: 1608.08813
[3] L. Solomon, “The solution of equations in groups”, Arch. Math. (Basel), 20:3 (1969), 241–247 | DOI | MR | Zbl
[4] S. Iwasaki, “A note on the $n$th roots ratio of a subgroup of a finite group”, J. Algebra, 78:2 (1982), 460–474 | DOI | MR | Zbl
[5] G. Frobenius, “Über einen Fundamentalsatz der Gruppentheorie”, Sitzungsber. Preuß. Akad. Wiss. Berlin, 1903 (1903), 987–991 | Zbl
[6] P. Hall, “On a theorem of Frobenius”, Proc. London Math. Soc., 40 (1936), 468–501 | DOI | MR | Zbl
[7] A. Kulakoff, “Einige Bemerkungen zur Arbeit: “On a theorem of Frobenius” von P. Hall”, Matem. sb., 3(45):2 (1938), 403–405 | Zbl
[8] S. K. Sehgal, “On P. Hall's generalisation of a theorem of Frobenius”, Proc. Glasgow Math. Assoc., 5:3 (1962), 97–100 | DOI | MR | Zbl
[9] I. M. Isaacs, “Systems of equations and generalized characters in groups”, Canadian J. Math., 22:5 (1970), 1040–1046 | DOI | MR | Zbl
[10] K. S. Brown, J. Thévenaz, “A generalization of Sylow's third theorem”, J. Algebra, 115:2 (1988), 414–430 | DOI | MR | Zbl
[11] T. Yoshida, “$|{\operatorname{Hom}(A, G)}|$”, J. Algebra, 156:1 (1993), 125–156 | DOI | MR | Zbl
[12] S. P. Strunkov, “On the theory of equations in finite groups”, Izv. Math., 59:6 (1995), 1273–1282 | DOI | MR | Zbl
[13] T. Asai, Yu. Takegahara, “$|{\operatorname{Hom}(A,G)}|$. IV”, J. Algebra, 246:2 (2001), 543–563 | DOI | MR | Zbl
[14] J. Sato, T. Asai, “On the $n$-th roots of a double coset of a finite group”, J. Sch. Sci. Eng. Kinki Univ., 43 (2007), 1–4
[15] A. Amit, U. Vishne, “Characters and solutions to equations in finite groups”, J. Algebra Appl., 10:4 (2011), 675–686 | DOI | MR | Zbl
[16] C. Gordon, F. Rodriguez-Villegas, “On the divisibility of $\#\operatorname{Hom}(\Gamma, G)$ by $|G|$”, J. Algebra, 350:1 (2012), 300–307 ; arXiv: 1105.6066 | DOI | MR | Zbl
[17] T. Asai, N. Chigira, T. Niwasaki, Yu. Takegahara, “On a theorem of P. Hall”, J. Group Theory, 16:1 (2013), 69–80 | DOI | MR | Zbl
[18] A. A. Klyachko, A. A. Mkrtchyan, “How many tuples of group elements have a given property?”, With an appendix by Dmitrii V. Trushin, Internat. J. Algebra Comput., 24:4 (2014), 413–428 ; arXiv: 1205.2824 | DOI | MR | Zbl
[19] A. A. Klyachko, A. A. Mkrtchyan, “Strange divisibility in groups and rings”, Arch. Math., 108:5 (2017), 441–451 ; arXiv: 1506.08967 | DOI | MR | Zbl
[20] E. K. Brusyanskaya, A. A. Klyachko, A. V. Vasil'ev, “What do Frobenius's, Solomon's, and Iwasaki's theorems on divisibility in groups have in common?”, Pacific J. Math., 302:2 (2019), 437–452 ; arXiv: 1806.08870 | DOI | MR | Zbl
[21] A. A. Klyachko, M. A. Ryabtseva, “The dimension of solution sets to systems of equations in algebraic groups”, Israel J. Math., 237:1 (2020), 141–154 ; arXiv: 1903.05236 | DOI | MR | Zbl
[22] R. Brauer, “On a theorem of Frobenius”, Amer. Math. Monthly, 76:1 (1969), 12–15 | DOI | MR | Zbl