On the number of epi-, mono- and homomorphisms of groups
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 243-251

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the number of homomorphisms from a group $F$ to a group $G$ is divisible by the greatest common divisor of the order of $G$ and the exponent of $F/[F,F]$. We study the question of what can be said about the number of homomorphisms satisfying certain natural conditions like injectivity or surjectivity. A simple non-trivial consequence of our results is the fact that in any finite group the number of generating pairs $(x,y)$ such that $x^3=1=y^5$ is divisible by the greatest common divisor of fifteen and the order of the group $[G,G]\cdot\{g^{15}\mid g\in G\}$.
Keywords: number of homomorphisms, equations in groups, Frobenius' theorem, Solomon's theorem.
@article{IM2_2022_86_2_a1,
     author = {E. K. Brusyanskaya and A. A. Klyachko},
     title = {On the number of epi-, mono- and homomorphisms of  groups},
     journal = {Izvestiya. Mathematics },
     pages = {243--251},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/}
}
TY  - JOUR
AU  - E. K. Brusyanskaya
AU  - A. A. Klyachko
TI  - On the number of epi-, mono- and homomorphisms of  groups
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 243
EP  - 251
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/
LA  - en
ID  - IM2_2022_86_2_a1
ER  - 
%0 Journal Article
%A E. K. Brusyanskaya
%A A. A. Klyachko
%T On the number of epi-, mono- and homomorphisms of  groups
%J Izvestiya. Mathematics 
%D 2022
%P 243-251
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/
%G en
%F IM2_2022_86_2_a1
E. K. Brusyanskaya; A. A. Klyachko. On the number of epi-, mono- and homomorphisms of  groups. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a1/