The optimal start control problem for two-dimensional Boussinesq equations
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 221-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the optimal start control for two-dimensional Boussinesq equations describing non-isothermal flows of a viscous fluid in a bounded domain. Using the study of the properties of admissible tuples and of the evolution operator, we prove the solubility of the optimization problem under natural assumptions about the model data. We derive a variational inequality which is satisfied by the optimal control provided that the objective functional is determined by the final observation. We also obtain sufficient conditions for the uniqueness of an optimal control.
Keywords: optimal control, start control, evolution operator, variational inequalities.
Mots-clés : Boussinesq equations
@article{IM2_2022_86_2_a0,
     author = {E. S. Baranovskii},
     title = {The optimal start control problem for two-dimensional {Boussinesq} equations},
     journal = {Izvestiya. Mathematics },
     pages = {221--242},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/}
}
TY  - JOUR
AU  - E. S. Baranovskii
TI  - The optimal start control problem for two-dimensional Boussinesq equations
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 221
EP  - 242
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/
LA  - en
ID  - IM2_2022_86_2_a0
ER  - 
%0 Journal Article
%A E. S. Baranovskii
%T The optimal start control problem for two-dimensional Boussinesq equations
%J Izvestiya. Mathematics 
%D 2022
%P 221-242
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/
%G en
%F IM2_2022_86_2_a0
E. S. Baranovskii. The optimal start control problem for two-dimensional Boussinesq equations. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 221-242. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/

[1] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | DOI | MR | Zbl | Zbl

[2] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.

[3] A. V. Fursikov, “Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations”, Math. USSR-Sb., 43:2 (1982), 251–273 | DOI | MR | Zbl

[4] Hyung-Chun Lee, Byeong Chun Shin, “Dynamics for controlled 2-D Boussinesq systems with distributed controls”, J. Math. Anal. Appl., 273:2 (2002), 457–479 | DOI | MR | Zbl

[5] A. V. Fursikov, “Flow of a viscous incompressible fluid around a body: boundary-value problems and minimization of the work of a fluid”, J. Math. Sci. (N.Y.), 180:6 (2012), 763–816 | DOI | MR | Zbl

[6] E. S. Baranovskii, “Optimal boundary control of nonlinear-viscous fluid flows”, Sb. Math., 211:4 (2020), 505–520 | DOI | DOI | MR | Zbl

[7] E. S. Baranovskii, A. A. Domnich, M. A. Artemov, “Optimal boundary control of non-isothermal viscous fluid flow”, Fluids, 4:3 (2019), 133, 14 pp. | DOI

[8] J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris; Gauthier-Villars, Paris, 1968, xiii+426 pp. | MR | MR | Zbl | Zbl

[9] A. Fursikov, A. V. Gorshkov, “Certain questions of feedback stabilization for Navier–Stokes equations”, Evol. Equ. Control Theory, 1:1 (2012), 109–140 | DOI | MR | Zbl

[10] M. V. Plekhanova, G. D. Baybulatova, P. N. Davydov, “Numerical solution of an optimal control problem for Oskolkov's system”, Math. Methods Appl. Sci., 41:18 (2018), 9071–9080 | DOI | MR | Zbl

[11] A. V. Fursikov, O. Yu. Imanuilov, “Exact controllability of the Navier–Stokes and Boussinesq equations”, Russian Math. Surveys, 54:3 (1999), 565–618 | DOI | DOI | MR | Zbl

[12] Shugang Li, Gengsheng Wang, “The time optimal control of the Boussinesq equations”, Numer. Funct. Anal. Optim., 24:1-2 (2003), 163–180 | DOI | MR | Zbl

[13] Hyung-Chun Lee, Youngmi Choi, “Analysis and approximation of linear feedback control problems for the Boussinesq equations”, Comput. Math. Appl., 51:5 (2006), 829–848 | DOI | MR | Zbl

[14] M. V. Plekhanova, A. F. Islamova, “Problems with a robust mixed control for the linearized Boussinesq equation”, Differ. Equ., 48:4 (2012), 574–585 | DOI | MR | Zbl

[15] J. A. Burns, Xiaoming He, Weiwei Hu, “Feedback stabilization of a thermal fluid system with mixed boundary control”, Comput. Math. Appl., 71:11 (2016), 2170–2191 | DOI | MR | Zbl

[16] C. D'Apice, O. P. Kupenko, R. Manzo, “On boundary optimal control problem for an arterial system: First-order optimality conditions”, Netw. Heterog. Media, 13:4 (2018), 585–607 | DOI | MR | Zbl

[17] G. V. Alekseev, “Solvability of stationary boundary control problems for heat convection equations”, Siberian Math. J., 39:5 (1998), 844–858 | DOI | MR | Zbl

[18] G. V. Alekseev, A. M. Khludnev, “Stability of solutions to extremal problems of boundary control for stationary heat convection equations”, J. Appl. Industr. Math., 5:1 (2011), 1–13 | DOI | MR | Zbl

[19] G. Alekseev, D. Tereshko, “Stability of optimal controls for the stationary Boussinesq equations”, Int. J. Differ. Equ., 2011 (2011), 535736, 28 pp. | DOI | MR | Zbl

[20] E. Mallea-Zepeda, E. Lenes, E. Valero, “Boundary control problem for heat convection equations with slip boundary condition”, Math. Probl. Eng., 2018 (2018), 7959761, 14 pp. | DOI | MR | Zbl

[21] J. L. Boldrini, E. Mallea-Zepeda, M. A. Rojas-Medar, “Optimal boundary control for the stationary Boussinesq equations with variable density”, Commun. Contemp. Math., 22:5 (2020), 1950031, 34 pp. | DOI | MR | Zbl

[22] J. Nečas, Direct methods in the theory of elliptic equations, Transl. from the French, Springer Monogr. Math., Springer, Heidelberg, 2012, xvi+372 pp. | DOI | MR | Zbl

[23] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Pure Appl. Math. (Amst.), 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003, xiv+305 pp. | MR | Zbl

[24] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 375 pp. | MR | Zbl

[25] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl

[26] E. S. Baranovskii, “Strong solutions of the incompressible Navier–Stokes–Voigt model”, Mathematics, 8:2 (2020), 181, 16 pp. | DOI

[27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl

[28] H. K. Pathak, An introduction to nonlinear analysis and fixed point theory, Springer, Singapore, 2018, xxvii+830 pp. | DOI | MR | Zbl