The optimal start control problem for two-dimensional Boussinesq equations
Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 221-242
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of the optimal start control for two-dimensional Boussinesq
equations describing non-isothermal flows of a viscous fluid in a bounded
domain. Using the study of the properties of admissible tuples and of the evolution
operator, we prove the solubility of the optimization problem under natural
assumptions about the model data. We derive a variational inequality which is
satisfied by the optimal control provided that the objective functional is
determined by the final observation. We also obtain sufficient conditions for the
uniqueness of an optimal control.
Keywords:
optimal control, start control, evolution operator,
variational inequalities.
Mots-clés : Boussinesq equations
Mots-clés : Boussinesq equations
@article{IM2_2022_86_2_a0,
author = {E. S. Baranovskii},
title = {The optimal start control problem for two-dimensional {Boussinesq} equations},
journal = {Izvestiya. Mathematics },
pages = {221--242},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/}
}
E. S. Baranovskii. The optimal start control problem for two-dimensional Boussinesq equations. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 221-242. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/