Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_2_a0, author = {E. S. Baranovskii}, title = {The optimal start control problem for two-dimensional {Boussinesq} equations}, journal = {Izvestiya. Mathematics }, pages = {221--242}, publisher = {mathdoc}, volume = {86}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/} }
E. S. Baranovskii. The optimal start control problem for two-dimensional Boussinesq equations. Izvestiya. Mathematics , Tome 86 (2022) no. 2, pp. 221-242. http://geodesic.mathdoc.fr/item/IM2_2022_86_2_a0/
[1] A. V. Fursikov, Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000, xiv+305 pp. | DOI | MR | Zbl | Zbl
[2] G. V. Alekseev, D. A. Tereshko, Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008, 365 pp.
[3] A. V. Fursikov, “Control problems and theorems concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier–Stokes and Euler equations”, Math. USSR-Sb., 43:2 (1982), 251–273 | DOI | MR | Zbl
[4] Hyung-Chun Lee, Byeong Chun Shin, “Dynamics for controlled 2-D Boussinesq systems with distributed controls”, J. Math. Anal. Appl., 273:2 (2002), 457–479 | DOI | MR | Zbl
[5] A. V. Fursikov, “Flow of a viscous incompressible fluid around a body: boundary-value problems and minimization of the work of a fluid”, J. Math. Sci. (N.Y.), 180:6 (2012), 763–816 | DOI | MR | Zbl
[6] E. S. Baranovskii, “Optimal boundary control of nonlinear-viscous fluid flows”, Sb. Math., 211:4 (2020), 505–520 | DOI | DOI | MR | Zbl
[7] E. S. Baranovskii, A. A. Domnich, M. A. Artemov, “Optimal boundary control of non-isothermal viscous fluid flow”, Fluids, 4:3 (2019), 133, 14 pp. | DOI
[8] J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris; Gauthier-Villars, Paris, 1968, xiii+426 pp. | MR | MR | Zbl | Zbl
[9] A. Fursikov, A. V. Gorshkov, “Certain questions of feedback stabilization for Navier–Stokes equations”, Evol. Equ. Control Theory, 1:1 (2012), 109–140 | DOI | MR | Zbl
[10] M. V. Plekhanova, G. D. Baybulatova, P. N. Davydov, “Numerical solution of an optimal control problem for Oskolkov's system”, Math. Methods Appl. Sci., 41:18 (2018), 9071–9080 | DOI | MR | Zbl
[11] A. V. Fursikov, O. Yu. Imanuilov, “Exact controllability of the Navier–Stokes and Boussinesq equations”, Russian Math. Surveys, 54:3 (1999), 565–618 | DOI | DOI | MR | Zbl
[12] Shugang Li, Gengsheng Wang, “The time optimal control of the Boussinesq equations”, Numer. Funct. Anal. Optim., 24:1-2 (2003), 163–180 | DOI | MR | Zbl
[13] Hyung-Chun Lee, Youngmi Choi, “Analysis and approximation of linear feedback control problems for the Boussinesq equations”, Comput. Math. Appl., 51:5 (2006), 829–848 | DOI | MR | Zbl
[14] M. V. Plekhanova, A. F. Islamova, “Problems with a robust mixed control for the linearized Boussinesq equation”, Differ. Equ., 48:4 (2012), 574–585 | DOI | MR | Zbl
[15] J. A. Burns, Xiaoming He, Weiwei Hu, “Feedback stabilization of a thermal fluid system with mixed boundary control”, Comput. Math. Appl., 71:11 (2016), 2170–2191 | DOI | MR | Zbl
[16] C. D'Apice, O. P. Kupenko, R. Manzo, “On boundary optimal control problem for an arterial system: First-order optimality conditions”, Netw. Heterog. Media, 13:4 (2018), 585–607 | DOI | MR | Zbl
[17] G. V. Alekseev, “Solvability of stationary boundary control problems for heat convection equations”, Siberian Math. J., 39:5 (1998), 844–858 | DOI | MR | Zbl
[18] G. V. Alekseev, A. M. Khludnev, “Stability of solutions to extremal problems of boundary control for stationary heat convection equations”, J. Appl. Industr. Math., 5:1 (2011), 1–13 | DOI | MR | Zbl
[19] G. Alekseev, D. Tereshko, “Stability of optimal controls for the stationary Boussinesq equations”, Int. J. Differ. Equ., 2011 (2011), 535736, 28 pp. | DOI | MR | Zbl
[20] E. Mallea-Zepeda, E. Lenes, E. Valero, “Boundary control problem for heat convection equations with slip boundary condition”, Math. Probl. Eng., 2018 (2018), 7959761, 14 pp. | DOI | MR | Zbl
[21] J. L. Boldrini, E. Mallea-Zepeda, M. A. Rojas-Medar, “Optimal boundary control for the stationary Boussinesq equations with variable density”, Commun. Contemp. Math., 22:5 (2020), 1950031, 34 pp. | DOI | MR | Zbl
[22] J. Nečas, Direct methods in the theory of elliptic equations, Transl. from the French, Springer Monogr. Math., Springer, Heidelberg, 2012, xvi+372 pp. | DOI | MR | Zbl
[23] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Pure Appl. Math. (Amst.), 140, 2nd ed., Elsevier/Academic Press, Amsterdam, 2003, xiv+305 pp. | MR | Zbl
[24] V. G. Litvinov, Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 375 pp. | MR | Zbl
[25] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, 2nd rev. ed., North-Holland Publishing Co., Amsterdam–New York, 1979, x+519 pp. | MR | MR | Zbl | Zbl
[26] E. S. Baranovskii, “Strong solutions of the incompressible Navier–Stokes–Voigt model”, Mathematics, 8:2 (2020), 181, 16 pp. | DOI
[27] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969, xx+554 pp. | MR | MR | Zbl | Zbl
[28] H. K. Pathak, An introduction to nonlinear analysis and fixed point theory, Springer, Singapore, 2018, xxvii+830 pp. | DOI | MR | Zbl