Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_1_a6, author = {V. T. Shevaldin}, title = {Extremal interpolation with the least value of~the norm of~the second derivative in~$L_p(\mathbb R)$}, journal = {Izvestiya. Mathematics }, pages = {203--219}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a6/} }
TY - JOUR AU - V. T. Shevaldin TI - Extremal interpolation with the least value of~the norm of~the second derivative in~$L_p(\mathbb R)$ JO - Izvestiya. Mathematics PY - 2022 SP - 203 EP - 219 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a6/ LA - en ID - IM2_2022_86_1_a6 ER -
V. T. Shevaldin. Extremal interpolation with the least value of~the norm of~the second derivative in~$L_p(\mathbb R)$. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 203-219. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a6/
[1] A. O. Gelfond, Calculus of finite differences, Int. Monogr. Adv. Math. Phys., Hindustan Publishing Corp., Delhi, 1971, vi+451 pp. | MR | MR | Zbl | Zbl
[2] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl
[3] J. Favard, “Sur l'interpolation”, J. Math. Pures Appl. (9), 19:9 (1940), 281–306 | MR | Zbl
[4] V. S. Ryaben'kii, “Necessary and sufficient conditions for good definition of boundary value problems for systems of ordinary difference equations”, U.S.S.R. Comput. Math. Math. Phys., 4:2 (1964), 43–61 | DOI | MR | Zbl
[5] V. S. Rjabenki, A. F. Filippow, Über die Stabilität von Differenzengleichungen, Mathematik für Naturwissenschaft und Technik, 3, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960, viii+136 pp. | MR | MR | Zbl | Zbl
[6] S. L. Sobolev, Lektsii po teorii kubaturnykh formul, Ch. 2, Izd-vo Novosibirskogo un-ta, Novosibirsk, 1965, 293 pp. | MR
[7] Yu. N. Subbotin, “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Ekstremalnye svoistva polinomov, Sbornik rabot, Tr. MIAN SSSR, 78, Nauka, M., 1965, 24–42 | MR | Zbl
[8] Yu. N. Subbotin, “Functional interpolation in the mean with smallest $n$ derivative”, Proc. Steklov Inst. Math., 88 (1967), 31–63 | MR | Zbl
[9] Yu. N. Subbotin, “Extremal problems of functional interpolation, and mean interpolation splines”, Proc. Steklov Inst. Math., 138 (1977), 127–185 | MR | Zbl
[10] Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24, no. 3, 2018, 200–225 | DOI | MR
[11] Th. Kunkle, “Favard's interpolation problem in one or more variables”, Constr. Approx., 18:4 (2002), 467–478 | DOI | MR | Zbl
[12] S. I. Novikov, V. T. Shevaldin, “O svyazi mezhdu vtoroi razdelennoi raznostyu i vtoroi proizvodnoi”, Tr. IMM UrO RAN, 26, no. 2, 2020, 216–224 | DOI | MR