Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_1_a5, author = {B. Ya. Kazarnovskii}, title = {The quasi-algebraic ring of~conditions of~$\mathbb C^n$}, journal = {Izvestiya. Mathematics }, pages = {169--202}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a5/} }
B. Ya. Kazarnovskii. The quasi-algebraic ring of~conditions of~$\mathbb C^n$. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 169-202. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a5/
[1] C. De Concini, C. Procesi, “Complete symmetric varieties. II. Intersection theory”, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985, 481–513 | DOI | MR | Zbl
[2] C. De Concini, “Equivariant embeddings of homogeneous spaces”, Proceedings of the international congress of mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 369–377 | MR | Zbl
[3] B. Ya. Kazarnovskii, A. G. Khovanskii, A. I. Esterov, “Newton polytopes and tropical geometry”, Russian Math. Surveys, 76:1 (2021), 91–175 | DOI | DOI | MR | Zbl
[4] B. Ya. Kazarnovskii, “Action of the complex Monge–Ampère operator on piecewise-linear functions and exponential tropical varieties”, Izv. Math., 78:5 (2014), 902–921 | DOI | DOI | MR | Zbl
[5] B. Ya. Kazarnovskii, “On the action of the complex Monge–Ampère operator on piecewise linear functions”, Funct. Anal. Appl., 48:1 (2014), 15–23 | DOI | DOI | MR | Zbl
[6] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical algebraic geometry, Oberwolfach Semin., 35, 2nd ed., Birkhäuser Verlag, Basel, 2009, x+104 pp. | DOI | MR | Zbl
[7] D. Maclagan, B. Sturmfels, Introduction to tropical geometry, Grad. Stud. Math., 161, Amer. Math. Soc., Providence, RI, 2015, xii+363 pp. | DOI | MR | Zbl
[8] B. Ya. Kazarnovskii, “c-fans and Newton polyhedra of algebraic varieties”, Izv. Math., 67:3 (2003), 439–460 | DOI | DOI | MR | Zbl
[9] B. Ya. Kazarnovskii, “Exponential analytic sets”, Funct. Anal. Appl., 31:2 (1997), 86–94 | DOI | DOI | MR | Zbl
[10] A. G. Khovanskii, Fewnomials, Transl. Math. Monogr., 88, Amer. Math. Soc., Providence, RI, 1991, viii+139 pp. | DOI | MR | MR | Zbl
[11] B. Ya. Kazarnovskij, “On the zeros of exponential sums”, Soviet Math. Dokl., 23 (1981), 347–351 | MR | Zbl
[12] B. Ya. Kazarnovskii, “Newton polyhedra and zeros of systems of exponential sums”, Funct. Anal. Appl., 18:4 (1984), 299–307 | DOI | MR | Zbl
[13] D. N. Bernstein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR | Zbl
[14] H. Weyl, “Mean motion”, Amer. J. Math., 60:4 (1938), 889–896 | DOI | MR | Zbl
[15] B. Zilber, “Exponential sums equations and the Schanuel conjecture”, J. London Math. Soc. (2), 65:1 (2002), 27–44 | DOI | MR | Zbl
[16] E. Bombieri, D. Masser, U. Zannier, “Anomalous subvarieties – structure theorems and applications”, Int. Math. Res. Not. IMRN, 2007:19 (2007), rnm057, 33 pp. | DOI | MR | Zbl
[17] M. Brion, “The structure of polytope algebra”, Tohoku Math. J. (2), 49:1 (1997), 1–32 | DOI | MR | Zbl
[18] A. Esterov, “Tropical varieties with polynomial weights and corner loci of piecewise polynomials”, Mosc. Math. J., 12:1 (2012), 55–76 ; arXiv: 1012.5800 | MR | Zbl
[19] E. Katz, “A tropical toolkit”, Expo. Math., 27:1 (2009), 1–36 | DOI | MR | Zbl
[20] L. Allerman, J. Rau, “First steps in tropical intersection theory”, Math. Z., 264:3 (2010), 633–670 | DOI | MR | Zbl
[21] L. Allermann, “Tropical intersection products on smooth varieties”, J. Eur. Math. Soc. (JEMS), 14:1 (2012), 107–126 | DOI | MR | Zbl
[22] G. M. Bergman, “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math. Soc., 157 (1971), 459–469 | DOI | MR | Zbl