Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and
Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 32-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic properties of multiple orthogonal Hermite polynomials which are determined by the orthogonality relations with respect to two Hermite weights (Gaussian distributions) with shifted maxima. The starting point of our asymptotic analysis is a four-term recurrence relation connecting the polynomials with adjacent numbers. We obtain asymptotic expansions as the number of the polynomial and its variable grow consistently (the so-called Plancherel–Rotach type asymptotic formulae). Two techniques are used. The first is based on constructing expansions of bases of homogeneous difference equations, and the second on reducing difference equations to pseudodifferential ones and using the theory of the Maslov canonical operator. The results of these approaches agree.
Keywords: asymptotic formulae, special functions, recurrence relations, pseudodifferential operators, Maslov canonical operator.
@article{IM2_2022_86_1_a1,
     author = {A. I. Aptekarev and S. Yu. Dobrokhotov and D. N. Tulyakov and A. V. Tsvetkova},
     title = {Plancherel--Rotach type asymptotic formulae for multiple orthogonal {Hermite} polynomials and},
     journal = {Izvestiya. Mathematics },
     pages = {32--91},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - S. Yu. Dobrokhotov
AU  - D. N. Tulyakov
AU  - A. V. Tsvetkova
TI  - Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 32
EP  - 91
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/
LA  - en
ID  - IM2_2022_86_1_a1
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A S. Yu. Dobrokhotov
%A D. N. Tulyakov
%A A. V. Tsvetkova
%T Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and
%J Izvestiya. Mathematics 
%D 2022
%P 32-91
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/
%G en
%F IM2_2022_86_1_a1
A. I. Aptekarev; S. Yu. Dobrokhotov; D. N. Tulyakov; A. V. Tsvetkova. Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 32-91. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/

[1] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite $H_n(x)=(-1)^ne^{\frac{x^2}2}\frac{d^n}{dx^n}\bigl(e^{-\frac{x^2}2}\bigr)$”, Comment. Math. Helv., 1 (1929), 227–254 | DOI | Zbl

[2] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[3] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[4] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[5] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl

[6] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics of polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] P. Bleher, A. Its, “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. of Math. (2), 150:1 (1999), 185–266 | DOI | MR | Zbl

[8] T. Dimofte, S. Gukov, “Quantum field theory and the volume conjecture”, Interactions between hyperbolic geometry, quantum topology and number theory, Contemp. Math., 541, Amer. Math. Soc., Providence, RI, 2011, 41–67 | DOI | MR | Zbl

[9] S. Garoufalidis, Thang T. Q. Lê, “The colored Jones function is $q$-holonomic”, Geom. Topol., 9 (2005), 1253–1293 | DOI | MR | Zbl

[10] R. M. Kashaev, “The hyperbolic volume of knots from quantum dilogarithm”, Lett. Math. Phys., 39:3 (1997), 269–275 ; (1996), 8 pp., arXiv: q-alg/9601025v2 | DOI | MR | Zbl

[11] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2000, viii+273 pp. | DOI | MR | Zbl

[12] D. N. Tulyakov, “Plancherel–Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients”, Sb. Math., 201:9 (2010), 1355–1402 | DOI | DOI | MR | Zbl

[13] S. Yu. Dobrokhotov, A. V. Tsvetkova, “Lagrangian manifolds related to the asymptotics of Hermite polynomials”, Math. Notes, 104:6 (2018), 810–822 | DOI | DOI | MR | Zbl

[14] A. I. Aptekarev, “Asymptotics of orthogonal polynomials in a neighborhood of the endpoints of the interval of orthogonality”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 35–50 | DOI | MR | Zbl

[15] D. N. Tulyakov, “Local asymptotics of the ratio of orthogonal polynomials in the neighbourhood of an end-point of the support of the orthogonality measure”, Sb. Math., 192:2 (2001), 299–321 | DOI | DOI | MR | Zbl

[16] D. N. Tulyakov, “Difference equations having bases with powerlike growth which are perturbed by a spectral parameter”, Sb. Math., 200:5 (2009), 753–781 | DOI | DOI | MR | Zbl

[17] A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012 (2012), 67–106 | DOI | MR | Zbl

[18] A. I. Aptekarev, D. N. Tulyakov, “The leading term of the Plancherel–Rotach asymptotic formula for solutions of recurrence relations”, Sb. Math., 205:12 (2014), 1696–1719 | DOI | DOI | MR | Zbl

[19] A. I. Aptekarev, D. N. Tulyakov, Asimptoticheskii bazis reshenii $q$-rekurrentnykh sootnoshenii vne zony blizkikh sobstvennykh znachenii, Preprinty IPM im. M. V. Keldysha, 2018, 24 pp. | DOI

[20] J. Heading, An introduction to phase-integral methods, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, vii+160 pp. | MR | Zbl | Zbl

[21] V. M. Babič, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Ser. Wave Phenomena, 4, Springer-Verlag, Berlin, 1991, xi+445 pp. | MR | MR | Zbl | Zbl

[22] S. Yu. Slavyanov, Asymptotic solutions of the one-dimensional Schrodinger equation, Transl. Math. Monogr., 151, Amer. Math. Soc., Providence, RI, 1996, xvi+190 pp. | MR | MR | Zbl | Zbl

[23] V. P. Maslov, Operational methods, Mir Publishers, Moscow, 1976, 559 pp. | MR | MR | Zbl | Zbl

[24] V. Maslov, “The characteristics of pseudo-differential operators and difference schemes”, Actes du congrès international des mathematiciens (Nice, 1970), v. 2, Gauthier-Villars, Paris, 1971, 755–769 | MR | Zbl

[25] V. G. Danilov, V. P. Maslov, “The Pontryagin duality principle for computing a Cherenkov type effect in crystals and difference schemes. II”, Proc. Steklov Inst. Math., 167 (1986), 103–116 | MR | Zbl

[26] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Études mathematiques, Dunod, Paris; Gauthier-Villars, Paris, 1972, xvi+384 pp. | Zbl

[27] V. P. Maslov, M. V. Fedoriuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981, ix+301 pp. | MR | MR | Zbl | Zbl

[28] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl

[29] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov

[30] S. Yu. Dobrokhotov, A. V. Tsvetkova, “An approach to finding the asymptotics of polynomials given by recurrence relations”, Russ. J. Math. Phys., 28:2 (2021), 198–223 | DOI | MR | Zbl

[31] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[32] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems”, Theoret. and Math. Phys., 201:3 (2019), 1742–1770 | DOI | DOI | MR | Zbl

[33] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagrangian manifolds and efficient short-wave asymptotics in a neighborhood of a caustic cusp”, Math. Notes, 108:3 (2020), 318–338 | DOI | DOI | MR | Zbl

[34] V. S. Buslaev, A. A. Fedotov, “The complex WKB method for the Harper equation”, St. Petersburg Math. J., 6:3 (1995), 495–517 | MR | Zbl

[35] A. Fedotov, E. Shchetka, “Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial”, St. Petersburg Math. J., 29:2 (2018), 363–381 | DOI | MR | Zbl

[36] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl

[37] M. V. Karasev, V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, Transl. Math. Monogr., 119, Amer. Math. Soc., Providence, RI, 1993, xii+366 pp. | MR | MR | Zbl | Zbl