Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_1_a1, author = {A. I. Aptekarev and S. Yu. Dobrokhotov and D. N. Tulyakov and A. V. Tsvetkova}, title = {Plancherel--Rotach type asymptotic formulae for multiple orthogonal {Hermite} polynomials and}, journal = {Izvestiya. Mathematics }, pages = {32--91}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/} }
TY - JOUR AU - A. I. Aptekarev AU - S. Yu. Dobrokhotov AU - D. N. Tulyakov AU - A. V. Tsvetkova TI - Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and JO - Izvestiya. Mathematics PY - 2022 SP - 32 EP - 91 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/ LA - en ID - IM2_2022_86_1_a1 ER -
%0 Journal Article %A A. I. Aptekarev %A S. Yu. Dobrokhotov %A D. N. Tulyakov %A A. V. Tsvetkova %T Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and %J Izvestiya. Mathematics %D 2022 %P 32-91 %V 86 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/ %G en %F IM2_2022_86_1_a1
A. I. Aptekarev; S. Yu. Dobrokhotov; D. N. Tulyakov; A. V. Tsvetkova. Plancherel--Rotach type asymptotic formulae for multiple orthogonal Hermite polynomials and. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 32-91. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a1/
[1] M. Plancherel, W. Rotach, “Sur les valeurs asymptotiques des polynomes d'Hermite $H_n(x)=(-1)^ne^{\frac{x^2}2}\frac{d^n}{dx^n}\bigl(e^{-\frac{x^2}2}\bigr)$”, Comment. Math. Helv., 1 (1929), 227–254 | DOI | Zbl
[2] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[3] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[4] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[5] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl
[6] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics of polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] P. Bleher, A. Its, “Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model”, Ann. of Math. (2), 150:1 (1999), 185–266 | DOI | MR | Zbl
[8] T. Dimofte, S. Gukov, “Quantum field theory and the volume conjecture”, Interactions between hyperbolic geometry, quantum topology and number theory, Contemp. Math., 541, Amer. Math. Soc., Providence, RI, 2011, 41–67 | DOI | MR | Zbl
[9] S. Garoufalidis, Thang T. Q. Lê, “The colored Jones function is $q$-holonomic”, Geom. Topol., 9 (2005), 1253–1293 | DOI | MR | Zbl
[10] R. M. Kashaev, “The hyperbolic volume of knots from quantum dilogarithm”, Lett. Math. Phys., 39:3 (1997), 269–275 ; (1996), 8 pp., arXiv: q-alg/9601025v2 | DOI | MR | Zbl
[11] P. Deift, Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lect. Notes Math., 3, Courant Inst. Math. Sci., New York; Amer. Math. Soc., Providence, RI, 2000, viii+273 pp. | DOI | MR | Zbl
[12] D. N. Tulyakov, “Plancherel–Rotach type asymptotics for solutions of linear recurrence relations with rational coefficients”, Sb. Math., 201:9 (2010), 1355–1402 | DOI | DOI | MR | Zbl
[13] S. Yu. Dobrokhotov, A. V. Tsvetkova, “Lagrangian manifolds related to the asymptotics of Hermite polynomials”, Math. Notes, 104:6 (2018), 810–822 | DOI | DOI | MR | Zbl
[14] A. I. Aptekarev, “Asymptotics of orthogonal polynomials in a neighborhood of the endpoints of the interval of orthogonality”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 35–50 | DOI | MR | Zbl
[15] D. N. Tulyakov, “Local asymptotics of the ratio of orthogonal polynomials in the neighbourhood of an end-point of the support of the orthogonality measure”, Sb. Math., 192:2 (2001), 299–321 | DOI | DOI | MR | Zbl
[16] D. N. Tulyakov, “Difference equations having bases with powerlike growth which are perturbed by a spectral parameter”, Sb. Math., 200:5 (2009), 753–781 | DOI | DOI | MR | Zbl
[17] A. I. Aptekarev, D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012 (2012), 67–106 | DOI | MR | Zbl
[18] A. I. Aptekarev, D. N. Tulyakov, “The leading term of the Plancherel–Rotach asymptotic formula for solutions of recurrence relations”, Sb. Math., 205:12 (2014), 1696–1719 | DOI | DOI | MR | Zbl
[19] A. I. Aptekarev, D. N. Tulyakov, Asimptoticheskii bazis reshenii $q$-rekurrentnykh sootnoshenii vne zony blizkikh sobstvennykh znachenii, Preprinty IPM im. M. V. Keldysha, 2018, 24 pp. | DOI
[20] J. Heading, An introduction to phase-integral methods, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, vii+160 pp. | MR | Zbl | Zbl
[21] V. M. Babič, V. S. Buldyrev, Short-wavelength diffraction theory. Asymptotic methods, Springer Ser. Wave Phenomena, 4, Springer-Verlag, Berlin, 1991, xi+445 pp. | MR | MR | Zbl | Zbl
[22] S. Yu. Slavyanov, Asymptotic solutions of the one-dimensional Schrodinger equation, Transl. Math. Monogr., 151, Amer. Math. Soc., Providence, RI, 1996, xvi+190 pp. | MR | MR | Zbl | Zbl
[23] V. P. Maslov, Operational methods, Mir Publishers, Moscow, 1976, 559 pp. | MR | MR | Zbl | Zbl
[24] V. Maslov, “The characteristics of pseudo-differential operators and difference schemes”, Actes du congrès international des mathematiciens (Nice, 1970), v. 2, Gauthier-Villars, Paris, 1971, 755–769 | MR | Zbl
[25] V. G. Danilov, V. P. Maslov, “The Pontryagin duality principle for computing a Cherenkov type effect in crystals and difference schemes. II”, Proc. Steklov Inst. Math., 167 (1986), 103–116 | MR | Zbl
[26] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Études mathematiques, Dunod, Paris; Gauthier-Villars, Paris, 1972, xvi+384 pp. | Zbl
[27] V. P. Maslov, M. V. Fedoriuk, Semi-classical approximation in quantum mechanics, Math. Phys. Appl. Math., 7, D. Reidel Publishing Co., Dordrecht–Boston, Mass., 1981, ix+301 pp. | MR | MR | Zbl | Zbl
[28] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, Based, in part, on notes left by H. Bateman, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953, xvii+396 pp. | MR | MR | Zbl | Zbl
[29] NIST Digital Library of Mathematical Functions https://dlmf.nist.gov
[30] S. Yu. Dobrokhotov, A. V. Tsvetkova, “An approach to finding the asymptotics of polynomials given by recurrence relations”, Russ. J. Math. Phys., 28:2 (2021), 198–223 | DOI | MR | Zbl
[31] A. I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355:10 (2003), 3887–3914 | DOI | MR | Zbl
[32] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems”, Theoret. and Math. Phys., 201:3 (2019), 1742–1770 | DOI | DOI | MR | Zbl
[33] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagrangian manifolds and efficient short-wave asymptotics in a neighborhood of a caustic cusp”, Math. Notes, 108:3 (2020), 318–338 | DOI | DOI | MR | Zbl
[34] V. S. Buslaev, A. A. Fedotov, “The complex WKB method for the Harper equation”, St. Petersburg Math. J., 6:3 (1995), 495–517 | MR | Zbl
[35] A. Fedotov, E. Shchetka, “Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial”, St. Petersburg Math. J., 29:2 (2018), 363–381 | DOI | MR | Zbl
[36] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl
[37] M. V. Karasev, V. P. Maslov, Nonlinear Poisson brackets. Geometry and quantization, Transl. Math. Monogr., 119, Amer. Math. Soc., Providence, RI, 1993, xii+366 pp. | MR | MR | Zbl | Zbl