Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2022_86_1_a0, author = {F. G. Avkhadiev}, title = {Embedding theorems related to torsional rigidity and principal frequency}, journal = {Izvestiya. Mathematics }, pages = {1--31}, publisher = {mathdoc}, volume = {86}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a0/} }
F. G. Avkhadiev. Embedding theorems related to torsional rigidity and principal frequency. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 1-31. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a0/
[1] E. Gagliardo, “Ulteriori proprieta di alcune classi di funzioni in piu variabili”, Ricerche Mat., 8 (1959), 24–51 | MR | Zbl
[2] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115–162 | MR | Zbl
[3] O. V. Besov, “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Matem. sb., 201:12 (2010), 69–82 | DOI | MR
[4] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp. ; G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951, xvi+279 pp. | MR | Zbl | DOI | MR | Zbl
[5] C. Bandle, Isoperimetric inequalities and applications, Monogr. Stud. Math., 7, Pitman (Advanced Publishing Program), Boston, MA–London, 1980, x+228 pp. | MR | Zbl
[6] E. Makai, “A lower estimation of the principal frequencies of simply connected membranes”, Acta Math. Acad. Sci. Hungar., 16 (1965), 319–323 | DOI | MR | Zbl
[7] W. K. Hayman, “Some bounds for principal frequency”, Appl. Anal., 7:3 (1978), 247–254 | DOI | MR | Zbl
[8] R. Osserman, “A note on Hayman's theorem on the bass note of a drum”, Comment. Math. Helv., 52:4 (1977), 545–555 | DOI | MR | Zbl
[9] L. E. Payne, I. Stakgold, “On the mean value of the fundamental mode in the fixed membrane problem”, Appl. Anal., 3:3 (1973), 295–303 | DOI | MR | Zbl
[10] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl
[11] F. G. Avkhadiev, “Variatsionnye konformno-invariantnye neravenstva i ikh prilozheniya”, Dokl. RAN, 359:6 (1998), 727–730 | MR | Zbl
[12] F. G. Avkhadiev, “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | MR | Zbl
[13] R. Bañuelos, M. van den Berg, T. Carroll, “Torsional rigidity and expected lifetime of Brownian motion”, J. London Math. Soc. (2), 66:2 (2002), 499–512 | DOI | MR | Zbl
[14] F. G. Avkhadiev, Konformno invariantnye neravenstva, Izd-vo Kazanskogo un-ta, Kazan, 2020, 260 pp.
[15] H. Rademacher, “Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und uber die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359 | DOI | MR | Zbl
[16] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. ; H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl | MR | Zbl
[17] A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015, xv+263 pp. | DOI | MR | Zbl
[18] F. G. Avkhadiev, “Svoistva i primeneniya funktsii rasstoyaniya otkrytogo podmnozhestva v evklidovom prostranstve”, Izv. vuzov. Matem., 2020, no. 4, 87–92 | DOI | MR | Zbl
[19] A. I. Nazarov, S. V. Poborchii, Neravenstvo Puankare i ego prilozheniya, uchebnoe posobie, Izd-vo S.-Peterburgskogo un-ta, SPb., 2012, 126 pp.
[20] C. Loewner, L. Nirenberg, “Partial differential equations invariant under conformal or projective transformations”, Contribution to analysis, A collection of papers dedicated to L. Bers, Academic Press, New York, 1974, 245–272 | MR | Zbl
[21] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U =U^{\frac {n+2}{n-2}}$”, SIAM Rev., 38:2 (1996), 191–238 | DOI | MR | Zbl
[22] F. G. Avkhadiev, “Konformno invariantnye neravenstva v oblastyakh evklidova prostranstva”, Izv. RAN. Ser. matem., 83:5 (2019), 3–26 | DOI | MR | Zbl
[23] Dzh. N. Vatson, Teoriya besselevykh funktsii, v. 1, 2, IL, M., 1949, 798 s., 220 pp.; G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl
[24] J. Hersch, “Sur la fréquence fondamentale d'une membrande vibrante: évaluations par défaut et principe de maximum”, Z. Angew. Math. Phys., 11 (1960), 387–413 | DOI | MR | Zbl
[25] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Grundlehren Math. Wiss., 93, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, xiii+312 pp. | MR | MR | Zbl | Zbl
[26] F. G. Avkhadiev, “Hardy–Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442:2 (2016), 469–484 | DOI | MR | Zbl
[27] F. G. Avkhadiev, “Integralnye neravenstva Khardi i Rellikha v oblastyakh, udovletvoryayuschikh usloviyu vneshnei sfery”, Algebra i analiz, 30:2 (2018), 18–44 ; F. G. Avkhadiev, “Hardy–Rellich integral inequalities in domains satisfying the exterior sphere condition”, St. Petersburg Math. J., 30:2 (2019), 161–179 | MR | Zbl | DOI
[28] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math. (Basel), 32:2 (1979), 192–199 | DOI | MR | Zbl
[29] R. G. Salakhudinov, “Dvustoronnie otsenki $L_p$-norm funktsii napryazheniya vypuklykh oblastei v $\mathbb{R}^n$”, Izv. vuzov. Matem., 2006, no. 3, 41–49 | MR | Zbl
[30] A. Carbery, V. Maz'ya, M. Mitrea, D. Rule, “The integrability of negative powers of the solution of the Saint Venant problem”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13:2 (2014), 465–531 | DOI | MR | Zbl
[31] R. G. Salakhudinov, “Izoperimetricheskaya monotonnost $L^p$-normy funktsii napryazheniya ploskoi odnosvyaznoi oblasti”, Izv. vuzov. Matem., 2010, no. 8, 59–68 | MR | Zbl
[32] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl
[33] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl
[34] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl
[35] F. G. Avkhadiev, “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Trudy MIAN, 255, Nauka, MAIK «Nauka/Interperiodika», M., 2006, 8–18 | MR | Zbl
[36] F. G. Avkhadiev, “Geometricheskoe opisanie oblastei, dlya kotorykh konstanta Khardi ravna 1/4”, Izv. RAN. Ser. matem., 78:5 (2014), 3–26 | DOI | MR | Zbl
[37] F. G. Avkhadiev, “Integralnye neravenstva v oblastyakh giperbolicheskogo tipa i ikh primeneniya”, Matem. sb., 206:12 (2015), 3–28 | DOI | MR | Zbl