Embedding theorems related to torsional rigidity and principal frequency
Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 1-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study criteria for the finiteness of the constants $C$ in integral inequalities generalizing the Poincaré–Friedrichs inequality and Saint-Venant's variational definition of torsional rigidity. The Rayleigh–Faber–Krahn isoperimetric inequality and the Saint-Venant–Pólya inequality guarantee the existence of finite constants $C$ for domains of finite volume. Criteria for the existence of finite constants $C$ for unbounded domains of infinite volume were known only in the cases of planar simply connected and spatial convex domains. We generalize and strengthen some known results and extend them to the case when $1$. Here is one of our results. Suppose that $1\leqslant p 2$ and $\Omega=\Omega^0\setminus K$, where $K\subset \Omega^0$ is a compact set and $\Omega^0$ is either a planar domain with uniformly perfect boundary or a spatial domain satisfying the exterior sphere condition. Under these assumptions, a finite constant $\Lambda_{p-1}(\Omega)$ exists if and only if the integral $\int_\Omega\rho^{{2p}/{(2-p)}}(x,\Omega)\, dx$ is finite, where $\rho(x,\Omega)$ is the distance from the point $x$ to the boundary of $\Omega$.
Keywords: distance function, Hardy's inequality, torsional rigidity, principal frequency.
@article{IM2_2022_86_1_a0,
     author = {F. G. Avkhadiev},
     title = {Embedding theorems related to torsional rigidity and principal frequency},
     journal = {Izvestiya. Mathematics },
     pages = {1--31},
     publisher = {mathdoc},
     volume = {86},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Embedding theorems related to torsional rigidity and principal frequency
JO  - Izvestiya. Mathematics 
PY  - 2022
SP  - 1
EP  - 31
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a0/
LA  - en
ID  - IM2_2022_86_1_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Embedding theorems related to torsional rigidity and principal frequency
%J Izvestiya. Mathematics 
%D 2022
%P 1-31
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a0/
%G en
%F IM2_2022_86_1_a0
F. G. Avkhadiev. Embedding theorems related to torsional rigidity and principal frequency. Izvestiya. Mathematics , Tome 86 (2022) no. 1, pp. 1-31. http://geodesic.mathdoc.fr/item/IM2_2022_86_1_a0/

[1] E. Gagliardo, “Ulteriori proprieta di alcune classi di funzioni in piu variabili”, Ricerche Mat., 8 (1959), 24–51 | MR | Zbl

[2] L. Nirenberg, “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 13 (1959), 115–162 | MR | Zbl

[3] O. V. Besov, “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Matem. sb., 201:12 (2010), 69–82 | DOI | MR

[4] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 336 pp. ; G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951, xvi+279 pp. | MR | Zbl | DOI | MR | Zbl

[5] C. Bandle, Isoperimetric inequalities and applications, Monogr. Stud. Math., 7, Pitman (Advanced Publishing Program), Boston, MA–London, 1980, x+228 pp. | MR | Zbl

[6] E. Makai, “A lower estimation of the principal frequencies of simply connected membranes”, Acta Math. Acad. Sci. Hungar., 16 (1965), 319–323 | DOI | MR | Zbl

[7] W. K. Hayman, “Some bounds for principal frequency”, Appl. Anal., 7:3 (1978), 247–254 | DOI | MR | Zbl

[8] R. Osserman, “A note on Hayman's theorem on the bass note of a drum”, Comment. Math. Helv., 52:4 (1977), 545–555 | DOI | MR | Zbl

[9] L. E. Payne, I. Stakgold, “On the mean value of the fundamental mode in the fixed membrane problem”, Appl. Anal., 3:3 (1973), 295–303 | DOI | MR | Zbl

[10] F. G. Avkhadiev, K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, ZAMM Z. Angew. Math. Mech., 87:8-9 (2007), 632–642 | DOI | MR | Zbl

[11] F. G. Avkhadiev, “Variatsionnye konformno-invariantnye neravenstva i ikh prilozheniya”, Dokl. RAN, 359:6 (1998), 727–730 | MR | Zbl

[12] F. G. Avkhadiev, “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | MR | Zbl

[13] R. Bañuelos, M. van den Berg, T. Carroll, “Torsional rigidity and expected lifetime of Brownian motion”, J. London Math. Soc. (2), 66:2 (2002), 499–512 | DOI | MR | Zbl

[14] F. G. Avkhadiev, Konformno invariantnye neravenstva, Izd-vo Kazanskogo un-ta, Kazan, 2020, 260 pp.

[15] H. Rademacher, “Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und uber die Transformation der Doppelintegrale”, Math. Ann., 79:4 (1919), 340–359 | DOI | MR | Zbl

[16] G. Federer, Geometricheskaya teoriya mery, Nauka, M., 1987, 760 pp. ; H. Federer, Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969, xiv+676 pp. | MR | Zbl | MR | Zbl

[17] A. A. Balinsky, W. D. Evans, R. T. Lewis, The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015, xv+263 pp. | DOI | MR | Zbl

[18] F. G. Avkhadiev, “Svoistva i primeneniya funktsii rasstoyaniya otkrytogo podmnozhestva v evklidovom prostranstve”, Izv. vuzov. Matem., 2020, no. 4, 87–92 | DOI | MR | Zbl

[19] A. I. Nazarov, S. V. Poborchii, Neravenstvo Puankare i ego prilozheniya, uchebnoe posobie, Izd-vo S.-Peterburgskogo un-ta, SPb., 2012, 126 pp.

[20] C. Loewner, L. Nirenberg, “Partial differential equations invariant under conformal or projective transformations”, Contribution to analysis, A collection of papers dedicated to L. Bers, Academic Press, New York, 1974, 245–272 | MR | Zbl

[21] C. Bandle, M. Flucher, “Harmonic radius and concentration of energy; hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U =U^{\frac {n+2}{n-2}}$”, SIAM Rev., 38:2 (1996), 191–238 | DOI | MR | Zbl

[22] F. G. Avkhadiev, “Konformno invariantnye neravenstva v oblastyakh evklidova prostranstva”, Izv. RAN. Ser. matem., 83:5 (2019), 3–26 | DOI | MR | Zbl

[23] Dzh. N. Vatson, Teoriya besselevykh funktsii, v. 1, 2, IL, M., 1949, 798 s., 220 pp.; G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, England; The Macmillan Co., New York, 1944, vi+804 pp. | MR | Zbl

[24] J. Hersch, “Sur la fréquence fondamentale d'une membrande vibrante: évaluations par défaut et principe de maximum”, Z. Angew. Math. Phys., 11 (1960), 387–413 | DOI | MR | Zbl

[25] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Grundlehren Math. Wiss., 93, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, xiii+312 pp. | MR | MR | Zbl | Zbl

[26] F. G. Avkhadiev, “Hardy–Rellich inequalities in domains of the Euclidean space”, J. Math. Anal. Appl., 442:2 (2016), 469–484 | DOI | MR | Zbl

[27] F. G. Avkhadiev, “Integralnye neravenstva Khardi i Rellikha v oblastyakh, udovletvoryayuschikh usloviyu vneshnei sfery”, Algebra i analiz, 30:2 (2018), 18–44 ; F. G. Avkhadiev, “Hardy–Rellich integral inequalities in domains satisfying the exterior sphere condition”, St. Petersburg Math. J., 30:2 (2019), 161–179 | MR | Zbl | DOI

[28] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math. (Basel), 32:2 (1979), 192–199 | DOI | MR | Zbl

[29] R. G. Salakhudinov, “Dvustoronnie otsenki $L_p$-norm funktsii napryazheniya vypuklykh oblastei v $\mathbb{R}^n$”, Izv. vuzov. Matem., 2006, no. 3, 41–49 | MR | Zbl

[30] A. Carbery, V. Maz'ya, M. Mitrea, D. Rule, “The integrability of negative powers of the solution of the Saint Venant problem”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13:2 (2014), 465–531 | DOI | MR | Zbl

[31] R. G. Salakhudinov, “Izoperimetricheskaya monotonnost $L^p$-normy funktsii napryazheniya ploskoi odnosvyaznoi oblasti”, Izv. vuzov. Matem., 2010, no. 8, 59–68 | MR | Zbl

[32] J. L. Fernández, “Domains with strong barrier”, Rev. Mat. Iberoamericana, 5:1-2 (1989), 47–65 | DOI | MR | Zbl

[33] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^n$”, J. London Math. Soc. (2), 34:2 (1986), 274–290 | DOI | MR | Zbl

[34] F. G. Avkhadiev, “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR | Zbl

[35] F. G. Avkhadiev, “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Sbornik statei, Trudy MIAN, 255, Nauka, MAIK «Nauka/Interperiodika», M., 2006, 8–18 | MR | Zbl

[36] F. G. Avkhadiev, “Geometricheskoe opisanie oblastei, dlya kotorykh konstanta Khardi ravna 1/4”, Izv. RAN. Ser. matem., 78:5 (2014), 3–26 | DOI | MR | Zbl

[37] F. G. Avkhadiev, “Integralnye neravenstva v oblastyakh giperbolicheskogo tipa i ikh primeneniya”, Matem. sb., 206:12 (2015), 3–28 | DOI | MR | Zbl