Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_6_a7, author = {A. L. Semenov and S. F. Soprunov}, title = {Lattice of definability (of reducts) for integers with successor}, journal = {Izvestiya. Mathematics }, pages = {1257--1269}, publisher = {mathdoc}, volume = {85}, number = {6}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a7/} }
A. L. Semenov; S. F. Soprunov. Lattice of definability (of reducts) for integers with successor. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1257-1269. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a7/
[1] A. Tarski, “On definable sets of real numbers”, Logic, semantics, metamathematics, 2nd ed., ed. J. Corcoran, Hackett Publishing Co., Indianapolis, IN, 1983, 110–142 ; “Sur les ensembles définissables de nombres réels I”, Fundamenta Math., 17 (1931), 210–239 | MR | DOI | Zbl
[2] A. L. Semenov, “Presburgerness of predicates regular in two number systems”, Siberian Math. J., 18:2 (1977), 289–300 | DOI | MR | Zbl
[3] A. Bès, C. Choffrut, Theories of real addition with and without a predicate for integers, arXiv: 2002.04282
[4] C. C. Elgot, M. O. Rabin, “Decidability and undecidability of extensions of second (first) order theory of (generalized) successor”, J. Symb. Log., 31:2 (1966), 169–181 | DOI | Zbl
[5] S. F. Soprunov, “Razreshimye obogascheniya struktur”, Slozhnost vychislenii i prikladnaya matematicheskaya logika, Voprosy kibernetiki, 134, Nauch. sovet AN SSSR po kompleksnoi probleme “Kibernetika”, M., 1988, 175–179 | MR | Zbl
[6] An. A. Muchnik, A. L. Semenov, “Lattice of definability in the order of rational numbers”, Math. Notes, 108:1 (2020), 94–107 | DOI | DOI | MR | Zbl
[7] A. L. Semenov, S. F. Soprunov, “A combinatorial version of the Svenonius theorem on definability”, Log. J. IGPL, 23:6 (2015), 966–975 | DOI | MR | Zbl
[8] A. L. Semenov, “Finiteness conditions for algebras of relations”, Proc. Steklov Inst. Math., 242 (2003), 92–96 | MR | Zbl
[9] C. Frasnay, “Quelques problèmes combinatoires concernant les ordres totaux et les relations monomorphes”, Ann. Inst. Fourier (Grenoble), 15:2 (1965), 415–524 | DOI | MR | Zbl
[10] D. Macpherson, “A survey of homogeneous structures”, Discrete Math., 311:15 (2011), 1599–1634 | DOI | MR | Zbl
[11] P. J. Cameron, “Transitivity of permutation groups on unordered sets”, Math. Z., 148:2 (1976), 127–139 | DOI | MR | Zbl
[12] M. Junker, M. Ziegler, “The 116 reducts of $(\mathbb Q, , a)$”, J. Symb. Log., 73:3 (2008), 861–884 | DOI | MR | Zbl
[13] M. Bodirsky, M. Pinsker, A. Pongrácz, “The 42 reducts of the random ordered graph”, Proc. Lond. Math. Soc. (3), 111:3 (2015), 591–632 | DOI | MR | Zbl
[14] G. Conant, “There are no intermediate structures between the group of integers and Presburger arithmetic”, J. Symb. Log., 83:1 (2018), 187–207 | DOI | MR | Zbl
[15] A. Semenov, S. Soprunov, V. Uspensky, “The lattice of definability. Origins, recent developments, and further directions”, Computer science – theory and applications, Proceedings of the 9th international computer science symposium in Russia, CSR 2014 (Moscow, 2014), Lecture Notes in Comput. Sci., 8476, Springer, Cham, 2014, 23–38 | DOI | MR | Zbl
[16] L. Svenonius, “A theorem on permutations in models”, Theoria (Lund), 25:3 (1959), 173–178 | DOI | MR
[17] W. Hodges, Model theory, Encyclopedia Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993, xiv+772 pp. | DOI | MR | Zbl