Lattice of definability (of reducts) for integers with successor
Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1257-1269

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the lattice of definability for integers with a successor (the relation $y = x + 1$) is described. The lattice, whose elements are also knows as reducts, consists of three (naturally described) infinite series of relations. The proof uses a version of the Svenonius theorem for structures of special form.
Keywords: definability, reducts, Svenonius theorem.
@article{IM2_2021_85_6_a7,
     author = {A. L. Semenov and S. F. Soprunov},
     title = {Lattice of definability (of reducts) for integers with successor},
     journal = {Izvestiya. Mathematics },
     pages = {1257--1269},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a7/}
}
TY  - JOUR
AU  - A. L. Semenov
AU  - S. F. Soprunov
TI  - Lattice of definability (of reducts) for integers with successor
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1257
EP  - 1269
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a7/
LA  - en
ID  - IM2_2021_85_6_a7
ER  - 
%0 Journal Article
%A A. L. Semenov
%A S. F. Soprunov
%T Lattice of definability (of reducts) for integers with successor
%J Izvestiya. Mathematics 
%D 2021
%P 1257-1269
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a7/
%G en
%F IM2_2021_85_6_a7
A. L. Semenov; S. F. Soprunov. Lattice of definability (of reducts) for integers with successor. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1257-1269. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a7/