Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_6_a5, author = {V. G. Kanovei and V. A. Lyubetsky}, title = {Models of set theory in which the separation theorem fails}, journal = {Izvestiya. Mathematics }, pages = {1181--1219}, publisher = {mathdoc}, volume = {85}, number = {6}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a5/} }
V. G. Kanovei; V. A. Lyubetsky. Models of set theory in which the separation theorem fails. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1181-1219. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a5/
[1] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Collection de monographies sur la theorie des fonctions, Gauthier-Villars, Paris, 1930, xv+328 pp. | MR | MR | Zbl | Zbl
[2] P. S. Novikov, “On the consistency of some propositions of the descriptive theory of sets”, Amer. Math. Soc. Transl. Ser. 2, 29, Amer. Math. Soc., Providence, RI, 1963, 51–89 | DOI | MR | MR | Zbl | Zbl
[3] V. G. Kanovei, V. A. Lyubetskii, “On some classical problems of descriptive set theory”, Russian Math. Surveys, 58 (2003), 839–927 | DOI | DOI | MR | Zbl
[4] Ya. N. Moschovakis, Descriptive set theory, Stud. Logic Found. Math., 100, North-Holland Publishing Co., Amsterdam–New York, 1980, xii+637 pp. | MR | Zbl
[5] A. S. Kechris, Classical descriptive set theory, Grad. Texts in Math., 156, Springer-Verlag, New York, 1995, xviii+402 pp. | DOI | MR | Zbl
[6] N. Lusin, “Sur les ensembles analytiques”, Fund. Math., 10 (1927), 1–95 | DOI | Zbl
[7] P. Novikoff, “Sur les fonctions implicites mesurables B”, Fund. Math., 17 (1931), 8–25 | DOI | Zbl
[8] P. Novikoff, “Sur la séparabilité des ensembles projectifs de seconde classe”, Fund. Math., 25 (1935), 459–466 | DOI | Zbl
[9] C. Kuratowski, “Sur les théorèmes de séparation dans la théorie des ensembles”, Fund. Math., 26 (1936), 183–191 | DOI | Zbl
[10] J. W. Addison, “Some consequences of the axiom of constructibility”, Fund. Math., 46 (1959), 337–357 | DOI | MR | Zbl
[11] J. W. Addison, Y. N. Moschovakis, “Some consequences of the axiom of definable determinateness”, Proc. Nat. Acad. Sci. U.S.A., 59:3 (1968), 708–712 | DOI | MR | Zbl
[12] D. A. Martin, “The axiom of determinateness and reduction principles in the analytical hierarchy”, Bull. Amer. Math. Soc., 74 (1968), 687–689 | DOI | MR | Zbl
[13] J. R. Steel, “Determinateness and the separation property”, J. Symb. Log., 46:1 (1981), 41–44 | DOI | MR | Zbl
[14] J. R. Steel, The core model iterability problem, Lecture Notes Logic, 8, Springer-Verlag, Berlin, 1996, iv+112 pp. | DOI | MR | Zbl
[15] K. Hauser, R.-D. Schindler, “Projective uniformization revisited”, Ann. Pure Appl. Logic, 103:1-3 (2000), 109–153 | DOI | MR | Zbl
[16] A. R. D. Mathias, “Surrealist landscape with figures (a survey of recent results in set theory)”, Period. Math. Hungar., 10:2-3 (1979), 109–175 | DOI | MR | Zbl
[17] R. B. Jensen, R. M. Solovay, “Some applications of almost disjoint sets”, Mathematical logic and foundations of set theory (Jerusalem, 1968), North-Holland, Amsterdam, 1970, 84–104 | MR | Zbl
[18] L. Harrington, The constructible reals can be (almost) anything, Handwritten notes, in four parts, 1974, 8 pp. http://logic-library.berkeley.edu/catalog/detail/2135
[19] R. Jensen, “Definable sets of minimal degree”, Mathematical logic and foundations of set theory (Jerusalem, 1968), North-Holland, Amsterdam, 1970, 122–128 | MR | Zbl
[20] T. Jech, Set theory, Springer Monogr. Math., 3rd millennium ed., rev. and exp., Springer-Verlag, Berlin, 2003, xiv+769 pp. | DOI | MR | Zbl
[21] A. Enayat, “On the Leibniz–Mycielski axiom in set theory”, Fund. Math., 181:3 (2004), 215–231 | DOI | MR | Zbl
[22] V. Kanovei, V. Lyubetsky, “A definable $\mathsf E_0$-class containing no definable elements”, Arch. Math. Logic, 54:5-6 (2015), 711–723 | DOI | MR | Zbl
[23] V. G. Kanovei, V. A. Lyubetsky, “A countable definable set containing no definable elements”, Math. Notes, 102:3 (2017), 338–349 | DOI | DOI | MR | Zbl
[24] M. Golshani, V. Kanovei, V. Lyubetsky, “A Groszek–Laver pair of undistinguishable $\mathsf E_0$-classes”, MLQ Math. Log. Q., 63:1-2 (2017), 19–31 | DOI | MR | Zbl
[25] V. Kanovei, V. Lyubetsky, “Counterexamples to countable-section $\Pi^1_2$ uniformization and $\Pi^1_3$ separation”, Ann. Pure Appl. Logic, 167:3 (2016), 262–283 | DOI | MR | Zbl
[26] V. G. Kanovei, V. A. Lyubetsky, “Non-uniformizable sets of second projective level with countable cross-sections in the form of Vitali classes”, Izv. Math., 82:1 (2018), 61–90 | DOI | DOI | MR | Zbl
[27] S.-D. Friedman, V. Gitman, V. Kanovei, “A model of second-order arithmetic satisfying AC but not DC”, J. Math. Log., 19:1 (2019), 1850013, 39 pp. | DOI | MR | Zbl
[28] A. Enayat, V. Kanovei, “An unpublished theorem of Solovay on OD partitions of reals into two non-OD parts, revisited”, J. Math. Log., 2020, 1–22, Publ. online | DOI
[29] V. G. Kanoveĭ, “On the nonemptiness of classes in axiomatic set theory”, Math. USSR-Izv., 12:3 (1978), 507–535 | DOI | MR | Zbl
[30] V. Kanovei, V. Lyubetsky, “Definable $\mathsf{E}_0$-classes at arbitrary projective levels”, Ann. Pure Appl. Logic, 169:9 (2018), 851–871 | DOI | MR | Zbl
[31] V. Kanovei, V. Lyubetsky, “Definable minimal collapse functions at arbitrary projective levels”, J. Symb. Log., 84:1 (2019), 266–289 | DOI | MR | Zbl
[32] V. Kanovei, V. Lyubetsky, “Non-uniformizable sets with countable cross-sections on a given level of the projective hierarchy”, Fund. Math., 245:2 (2019), 175–215 | DOI | MR | Zbl
[33] V. Kanovei, V. Lyubetsky, “On the $\Delta^1_n$ problem of Harvey Friedman”, Mathematics, 8:9 (2020), 1477, 30 pp. | DOI
[34] U. Abraham, “A minimal model for $\neg\mathrm{CH}$: iteration of Jensen's reals”, Trans. Amer. Math. Soc., 281:2 (1984), 657–674 | DOI | MR | Zbl
[35] J. E. Baumgartner, R. Laver, “Iterated perfect-set forcing”, Ann. Math. Logic, 17:3 (1979), 271–288 | DOI | MR | Zbl
[36] M. Groszek, T. Jech, “Generalized iteration of forcing”, Trans. Amer. Math. Soc., 324:1 (1991), 1–26 | DOI | MR | Zbl
[37] V. Kanovei, “Non-Glimm–Effros equivalence relations at second projective level”, Fund. Math., 154:1 (1997), 1–35 | DOI | MR | Zbl
[38] V. Kanovei, “An Ulm-type classification theorem for equivalence relations in Solovay model”, J. Symb. Log., 62:4 (1997), 1333–1351 | DOI | MR | Zbl
[39] V. Kanovei, “On non-wellfounded iterations of the perfect set forcing”, J. Symb. Log., 64:2 (1999), 551–574 | DOI | MR | Zbl
[40] V. G. Kanoveĭ, “The set of all analytically definable sets of natural numbers can be defined analytically”, Math. USSR-Izv., 15:3 (1980), 469–500 | DOI | MR | Zbl
[41] S. Hoffelner, The consistency of the $\mathbf{\Sigma}^1_3$-separation property, arXiv: 1912.11811