Finitely presented nilsemigroups: complexes with the property of~uniform ellipticity
Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1146-1180.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is the first in a series of three devoted to constructing a finitely presented infinite nilsemigroup satisfying the identity $x^9=0$. This solves a problem of Lev Shevrin and Mark Sapir. In this first part we obtain a sequence of complexes formed of squares ($4$-cycles) having the following geometric properties. 1) Complexes are uniformly elliptic. A space is said to be uniformly elliptic if there is a constant $\lambda>0$ such that in the set of shortest paths of length $D$ connecting points $A$ and $B$ there are two paths such that the distance between them is at most $\lambda D$. In this case, the distance between paths with the same beginning and end is defined as the maximal distance between the corresponding points. 2) Complexes are nested. A complex of level $n+1$ is obtained from a complex of level $n$ by adding several vertices and edges according to certain rules. 3) Paths admit local transformations. Assume that we can transform paths by replacing a path along two sides of a minimal square by the path along the other two sides. Two shortest paths with the same ends can be transformed into each other locally if these ends are vertices of a square in the embedded complex. The geometric properties of the sequence of complexes will be further used to define finitely presented semigroups.
Keywords: finitely presented semigroups, nilsemigroups, finitely presented rings, finitely presented groups.
@article{IM2_2021_85_6_a4,
     author = {I. A. Ivanov-Pogodaev and A. Ya. Kanel-Belov},
     title = {Finitely presented nilsemigroups: complexes with the property of~uniform ellipticity},
     journal = {Izvestiya. Mathematics },
     pages = {1146--1180},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a4/}
}
TY  - JOUR
AU  - I. A. Ivanov-Pogodaev
AU  - A. Ya. Kanel-Belov
TI  - Finitely presented nilsemigroups: complexes with the property of~uniform ellipticity
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1146
EP  - 1180
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a4/
LA  - en
ID  - IM2_2021_85_6_a4
ER  - 
%0 Journal Article
%A I. A. Ivanov-Pogodaev
%A A. Ya. Kanel-Belov
%T Finitely presented nilsemigroups: complexes with the property of~uniform ellipticity
%J Izvestiya. Mathematics 
%D 2021
%P 1146-1180
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a4/
%G en
%F IM2_2021_85_6_a4
I. A. Ivanov-Pogodaev; A. Ya. Kanel-Belov. Finitely presented nilsemigroups: complexes with the property of~uniform ellipticity. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1146-1180. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a4/

[1] E. I. Zelmanov, “On the nilpotency of nil algebras”, Algebra – some current trends (Varna, 1986), Lecture Notes in Math., 1352, Springer, Berlin, 1988, 227–240 | DOI | MR | Zbl

[2] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Q. J. Pure Appl. Math., 33 (1902), 230–238 | Zbl

[3] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya $4$”, Uch. zap. Leningr. un-ta. Ser. matem., 10 (1940), 166–170 | MR | Zbl

[4] M. Hall, Jr., “Solution of the Burnside problem for exponent $6$”, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 751–753 | DOI | MR | Zbl

[5] E. S. Golod, “On nil-algebras and finitely approximable $p$-groups”, Amer. Math. Soc. Transl. Ser. 2, 48, Amer. Math. Soc., Providence, RI, 1965, 103–106 | DOI | MR | Zbl

[6] E. S. Golod, I. R. Šafarevič, “On class field towers”, Amer. Math. Soc. Transl. Ser. 2, 48, Amer. Math. Soc., Providence, RI, 1965, 91–102 ; II, No 2, 251–524 ; III, No 3, 709–731 | DOI | MR | Zbl | MR | Zbl | MR

[7] P. S. Novikov, S. I. Adian, “Infinite periodic groups. I”, Math. USSR-Izv., 2:1 (1968), 209–236 ; II:2, 241–479 ; III:3, 665–685 | DOI | DOI | DOI | MR | MR | MR | Zbl

[8] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979, xi+311 pp. | MR | MR | Zbl | Zbl

[9] S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855 | DOI | DOI | MR | Zbl

[10] S. I. Adian, “New estimates of odd exponents of infinite Burnside groups”, Proc. Steklov Inst. Math., 289 (2015), 33–71 | DOI | DOI | MR | Zbl

[11] A. Yu. Ol'shanskiĭ, “On the Novikov–Adyan theorem”, Math. USSR-Sb., 46:2 (1983), 203–236 | DOI | MR | Zbl

[12] A. Yu. Ol'shanskii, Geometry of defining relations in groups, Math. Appl. (Soviet Ser.), 70, Kluwer Acad. Publ., Dordrecht, 1991, xxvi+505 pp. | DOI | MR | MR | Zbl | Zbl

[13] I. G. Lysenok, “The infinitude of Burnside groups of period $2^k$ for $k \geq 13$”, Russian Math. Surveys, 47:2 (1992), 229–230 | DOI | MR | Zbl

[14] I. G. Lysenok, “Infinite Burnside groups of even exponent”, Izv. Math., 60:3 (1996), 453–654 | DOI | DOI | MR | Zbl

[15] S. V. Ivanov, “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1-2 (1994), 1–308 | DOI | MR | Zbl

[16] S. V. Ivanov, “On the Burnside problem on periodic groups”, Bull. Amer. Math. Soc. (N.S.), 27:2 (1992), 257–260 | DOI | MR | Zbl

[17] A. I. Shirshov, “O nekotorykh neassotsiativnykh nil-koltsakh i algebraicheskikh algebrakh”, Matem. sb., 41(83):3 (1957), 381–394 | MR | Zbl

[18] A. I. Shirshov, “O koltsakh s tozhdestvennymi sootnosheniyami”, Matem. sb., 43(85):2 (1957), 277–283 | MR | Zbl

[19] A. Belov-Kanel, L. H. Rowen, “Perspectives on Shirshov's Height theorem”, Selected works of A. I. Shirshov, Contemp. Mathematicians, Birkhäuser Verlag, Basel, 2009, 185–202 | DOI | MR | Zbl

[20] A. R. Kemer, “Comments on Shirshov's Height theorem”, Selected works of A. I. Shirshov, Contemp. Mathematicians, Birkhäuser Verlag, Basel, 2009, 223–229 | DOI | MR | Zbl

[21] A. Ya. Belov, “Burnside-type problems, theorems on height, and independence”, J. Math. Sci. (N.Y.), 156:2 (2009), 219–260 | DOI | MR | Zbl

[22] A. Ya. Belov, M. I. Kharitonov, “Subexponential estimates in Shirshov's theorem on height”, Sb. Math., 203:4 (2012), 534–553 | DOI | DOI | MR | Zbl

[23] A. I. Kostrikin, Around Burnside, Ergeb. Math. Grenzgeb. (3), 20, Springer-Verlag, Berlin, 1990, xii+220 pp. | DOI | MR | MR | Zbl | Zbl

[24] M. V. Sapir, Combinatorial algebra: syntax and semantics, With contributions by V. S. Guba, M. V. Volkov, Springer Monogr. Math., Springer, Cham, 2014, xvi+355 pp. | DOI | MR | Zbl

[25] A. Yu. Ol'shanskii, M. V. Sapir, “Non-amenable finitely presented torsion-by-cyclic groups”, Publ. Math. Inst. Hautes Études Sci., 96, no. 1, 2003, 43–169 | DOI | MR | Zbl

[26] T. Gateva-Ivanova, V. Latyshev, “On recognizable properties of associative algebras”, [J. Symbolic Comput., 6:2-3 (1988), 371–388], Computational aspects of commutative algebras, Academic Press, London, 1988, 237–254 | DOI | MR | Zbl

[27] “Dniester notebook: unsolved problems in the theory of rings and modules”, Non-associative algebra and its applications, Lect. Notes Pure Appl. Math., 246, eds. V. T. Filippov, I. P. Shestakov, V. K. Kharchenko, Chapman Hall/CRC, Boca Raton, FL, 2006, 461–516 | MR | MR | Zbl | Zbl

[28] G. Kukin, “The variety of all rings has Higman's property”, Algebra and analysis (Irkutsk, 1989), Amer. Math. Soc. Transl. Ser. 2, 163, Amer. Math. Soc., Providence, RI, 1995, 91–101 | DOI | MR | Zbl

[29] V. Ya. Belyaev, “Embedding recursively defined inverse semigroups in finitely presented semigroups”, Siberian Math. J., 25:2 (1984), 207–210 | DOI | MR | Zbl

[30] V. A. Ufnarovskii, “The growth of algebras”, Moscow Univ. Math. Bull., 33:4 (1978), 47–52 | MR | Zbl

[31] V. V. Schigolev, “O nil i nilpotentnykh konechnoopredelennykh algebrakh”, Fundament. i prikl. matem., 6:4 (2000), 1239–1245 | MR | Zbl

[32] N. K. Iyudu, Standartnye bazisy i raspoznavaemost svoistv algebr, zadannykh kopredstavleniem, Diss. ... kand. fiz.-matem. nauk, MGU, M., 1996, 73 pp.

[33] I. A. Ivanov-Pogodaev, “Finite Gröbner basis algebra with unsolvable problem of zero divisors”, J. Math. Sci. (N.Y.), 152:2 (2008), 191–202 | DOI | MR | Zbl

[34] D. I. Piontkovskii, “Nekommutativnye bazisy Grebnera, kogerentnost assotsiativnykh algebr i delimost v polugruppakh”, Fundament. i prikl. matem., 7:2 (2001), 495–513 | MR | Zbl

[35] D. I. Piontkovskii, “Bazisy Grebnera i kogerentnost monomialnoi assotsiativnoi algebry”, Fundament. i prikl. matem., 2:2 (1996), 501–509 | MR | Zbl

[36] V. A. Ufnarovskij, “Combinatorial and asymptotic methods in algebra”, Algebra VI, Encyclopaedia Math. Sci., 57, Springer, Berlin, 1995, 1–196 | MR | Zbl

[37] A. Ya. Belov, “Linear recurrence equations on a tree”, Math. Notes, 78:5 (2005), 603–609 | DOI | DOI | MR | Zbl

[38] L. A. Bokut', G. P. Kukin, Algorithmic and combinatorial algebra, Math. Appl., 255, Kluwer Acad. Publ., Dordrecht, 1994, xvi+384 pp. | DOI | MR | Zbl

[39] M. V. Sapir, “Algorithmic problems for amalgams of finite semigroups”, J. Algebra, 229:2 (2000), 514–531 | DOI | MR | Zbl

[40] Nereshennye zadachi teorii polugrupp, Sverdlovskaya tetrad, no. 3, Ural. gos. un-t, Sverdlovsk, 1989, 40 pp.

[41] O. G. Kharlampovich, M. V. Sapir, “Algorithmic problems in varieties”, Internat. J. Algebra Comput., 5:4-5 (1995), 379–602 | DOI | MR | Zbl

[42] A. Ya. Belov, I. A. Ivanov, “Construction of semigroups with some exotic properties”, Comm. Algebra, 31:2 (2003), 673–696 | DOI | MR | Zbl

[43] A. Ya. Belov, I. A. Ivanov, “Construction of semigroups with some exotic properties”, Acta Appl. Math., 85:1-3 (2005), 49–56 | DOI | MR | Zbl

[44] I. Ivanov-Pogodaev, S. Malev, “Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors”, J. Algebra, 508 (2018), 575–588 | DOI | MR | Zbl

[45] I. Ivanov-Pogodaev, S. Malev, O. Sapir, “A construction of a finitely presented semigroup containing an infinite square-free ideal with zero multiplication”, Internat. J. Algebra Comput., 28:8 (2018), 1565–1573 | DOI | MR | Zbl

[46] I. A. Ivanov-Pogodaev, Mashina Minskogo, svoistva nilpotentnosti i razmernost Gelfanda–Kirillova v konechno-opredelennykh polugruppakh, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2006, 77 pp.

[47] A. Belov, I. Ivanov-Pogodaev, “Construction of finitelly presented Nill but not nilpotent semigroup”, International conference on algebra and related topics (ICCA) (Guangzhou, 2009), The Center of Combinatorial Algebra, South China Normal Univ., 2009, 18

[48] A. Belov-Kanel, I. Ivanov-Pogodaev, Finitely presented nil-semigroups and aperiodic tilings, CIRM, SubTile 2013 Pavages: systèmes dynamiques, combinatoire, théorie des nombres, décidabilité, géométrie discrète, géométrie non-commutative (Marseille, 2013) http://subtile2013.sciencesconf.org/conference/subtile2013/pages/Kanel_Belov_1.ppt

[49] A. Ya. Belov, I. A. Ivanov-Pogodaev, “Construction of finitely presented infinite nil-semigroup”, Classical aspects of ring theory and module theory. Abstracts (Bedlewo, 2013), Stefan Banach International Mathematical Center, 2013, 14

[50] I. A. Ivanov-Pogodaev, A. Ya. Belov, “Postroenie konechno opredelennoi nil-polugruppy”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya (Tula, 2014), Tul. gos. ped. un-t im. L. N. Tolstogo, Tula, 2014, 30

[51] A. Belov-Kanel, I. Ivanov-Pogodaev, “Construction of infinite finitely presented nilsemigroup”, Groups and rings, theory and applications, GRiTA2015 (Sofia, 2015), Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, Sofia, 2015, 10

[52] A. Belov-Kanel, I. Ivanov-Pogodaev, “Construction of infinite finitely presented nilsemigroup”, First joint international meeting of the Israel mathematical union and the Mexican mathematical society (Oaxaca, 2015), Instituto Tecnologico de Oaxaca, 2015, 13

[53] A. J. Belov, V. V. Borisenko, V. N. Latyshev, Monomial algebras, Plenum, New York, NY, 1998

[54] N. K. Iyudu, “Algoritmicheskaya razreshimost problemy raspoznavaniya delitelei nulya v odnom klasse algebr”, Fundament. i prikl. matem., 1:2 (1995), 541–544 | MR | Zbl

[55] R. Berger, The undecidability of the domino problem, Ph.D. thesis, Harvard Univ., 1964 | MR

[56] R. M. Robinson, “Undecidability and nonperiodicity for tilings of the plane”, Invent. Math., 12 (1971), 177–209 | DOI | MR | Zbl

[57] C. Goodman-Strauss, “Matching rules and substitution tilings”, Ann. of Math. (2), 147:1 (1998), 181–223 | DOI | MR | Zbl

[58] N. Bédaride, Th. Fernique, “When periodicities enforce aperiodicity”, Comm. Math. Phys., 335:3 (2015), 1099–1120 | DOI | MR | Zbl

[59] Wang Hao, “Proving theorems by pattern recognition – II”, Bell System Tech. J., 40:1 (1961), 1–41 | DOI

[60] T. Fernique, I. Ivanov-Pogodaev, A. Belov, I. Mitrofanov, Aperiodic tilings, 25 summer conference International mathematical Tournament of towns (Borovka, Belarus, 2013) ; И. Иванов-Погодаев, А. Канель-Белов, И. Митрофанов, Т. Ферник, Апериодические замощения http://www.turgor.ru/lktg/2013/2/index.htmhttp://lipn.univ-paris13.fr/~fernique/info/turgorod_rus2.pdf

[61] J. H. Conway, J. C. Lagarias, “Tiling with polyominoes and combinatorial group theory”, J. Combin. Theory Ser. A, 53:2 (1990), 183–208 | DOI | MR | Zbl

[62] A. Belov-Kanel, I. Ivanov-Pogodaev, A. Malistov, I. Mitrofanov, M. Kharitonov, Pavements, colorings and tiling groups, 21-th summer conference International mathematical Tournament of towns (Teberda, 2009), 2009 http://www.turgor.ru/lktg/2009/4/index.php