On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles
Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1060-1127

Voir la notice de l'article provenant de la source Math-Net.Ru

The Torelli group of a closed oriented surface $S_g$ of genus $g$ is the subgroup $\mathcal{I}_g$ of the mapping class group $\operatorname{Mod}(S_g)$ consisting of all mapping classes that act trivially on the homology of $S_g$. One of the most intriguing open problems concerning Torelli groups is the question of whether the group $\mathcal{I}_3$ is finitely presented. A possible approach to this problem relies on the study of the second homology group of $\mathcal{I}_3$ using the spectral sequence $E^r_{p,q}$ for the action of $\mathcal{I}_3$ on the complex of cycles. In this paper we obtain evidence for the conjecture that $H_2(\mathcal{I}_3;\mathbb{Z})$ is not finitely generated and hence $\mathcal{I}_3$ is not finitely presented. Namely, we prove that the term $E^3_{0,2}$ of the spectral sequence is not finitely generated, that is, the group $E^1_{0,2}$ remains infinitely generated after taking quotients by the images of the differentials $d^1$ and $d^2$. Proving that it remains infinitely generated after taking the quotient by the image of $d^3$ would complete the proof that $\mathcal{I}_3$ is not finitely presented.
Keywords: Torelli group, mapping class group, homology of groups, complex of cycles, action of a group on a complex, spectral sequence, Birman–Craggs homomorphisms.
@article{IM2_2021_85_6_a2,
     author = {A. A. Gaifullin},
     title = {On a~spectral sequence for the action of~the {Torelli} group of~genus~$3$ on~the complex of cycles},
     journal = {Izvestiya. Mathematics },
     pages = {1060--1127},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1060
EP  - 1127
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/
LA  - en
ID  - IM2_2021_85_6_a2
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles
%J Izvestiya. Mathematics 
%D 2021
%P 1060-1127
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/
%G en
%F IM2_2021_85_6_a2
A. A. Gaifullin. On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1060-1127. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/