On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles
Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1060-1127.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Torelli group of a closed oriented surface $S_g$ of genus $g$ is the subgroup $\mathcal{I}_g$ of the mapping class group $\operatorname{Mod}(S_g)$ consisting of all mapping classes that act trivially on the homology of $S_g$. One of the most intriguing open problems concerning Torelli groups is the question of whether the group $\mathcal{I}_3$ is finitely presented. A possible approach to this problem relies on the study of the second homology group of $\mathcal{I}_3$ using the spectral sequence $E^r_{p,q}$ for the action of $\mathcal{I}_3$ on the complex of cycles. In this paper we obtain evidence for the conjecture that $H_2(\mathcal{I}_3;\mathbb{Z})$ is not finitely generated and hence $\mathcal{I}_3$ is not finitely presented. Namely, we prove that the term $E^3_{0,2}$ of the spectral sequence is not finitely generated, that is, the group $E^1_{0,2}$ remains infinitely generated after taking quotients by the images of the differentials $d^1$ and $d^2$. Proving that it remains infinitely generated after taking the quotient by the image of $d^3$ would complete the proof that $\mathcal{I}_3$ is not finitely presented.
Keywords: Torelli group, mapping class group, homology of groups, complex of cycles, action of a group on a complex, spectral sequence, Birman–Craggs homomorphisms.
@article{IM2_2021_85_6_a2,
     author = {A. A. Gaifullin},
     title = {On a~spectral sequence for the action of~the {Torelli} group of~genus~$3$ on~the complex of cycles},
     journal = {Izvestiya. Mathematics },
     pages = {1060--1127},
     publisher = {mathdoc},
     volume = {85},
     number = {6},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1060
EP  - 1127
VL  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/
LA  - en
ID  - IM2_2021_85_6_a2
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles
%J Izvestiya. Mathematics 
%D 2021
%P 1060-1127
%V 85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/
%G en
%F IM2_2021_85_6_a2
A. A. Gaifullin. On a~spectral sequence for the action of~the Torelli group of~genus~$3$ on~the complex of cycles. Izvestiya. Mathematics , Tome 85 (2021) no. 6, pp. 1060-1127. http://geodesic.mathdoc.fr/item/IM2_2021_85_6_a2/

[1] D. McCullough, A. Miller, “The genus $2$ Torelli group is not finitely generated”, Topology Appl., 22:1 (1986), 43–49 | DOI | MR | Zbl

[2] G. Mess, “The Torelli groups for genus $2$ and $3$ surfaces”, Topology, 31:4 (1992), 775–790 | DOI | MR | Zbl

[3] D. Johnson, “The structure of the Torelli group. I. A finite set of generators for $\mathcal{I}$”, Ann. of Math. (2), 118:3 (1983), 423–442 | DOI | MR | Zbl

[4] R. Kirby, “Problems in low-dimensional topology”, Geometric topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2.2, Amer. Math. Soc., Providence, RI; International Press, Cambridge, MA, 1997, 35–473 | DOI | MR | Zbl

[5] M. Bestvina, K.-U. Bux, D. Margalit, “The dimension of the Torelli group”, J. Amer. Math. Soc., 23:1 (2010), 61–105 ; arXiv: 0709.0287 | DOI | MR | Zbl

[6] T. E. Brendle, B. Farb, “The Birman–Craggs–Johnson homomorphism and abelian cycles in the Torelli group”, Math. Ann., 338:1 (2007), 33–53 ; arXiv: 0601163 | DOI | MR | Zbl

[7] R. Hain, “The rational cohomology ring of the moduli space of abelian $3$-folds”, Math. Res. Lett., 9:4 (2002), 473–491 ; arXiv: math/0203057 | DOI | MR | Zbl

[8] T. Akita, “Homological infiniteness of Torelli groups”, Topology, 40:2 (2001), 213–221 ; arXiv: alg-geom/9712006 | DOI | MR | Zbl

[9] A. A. Gaifullin, On infinitely generated homology of Torelli groups, arXiv: 1803.09311

[10] D. Johnson, “The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves”, Topology, 24:2 (1985), 113–126 | DOI | MR | Zbl

[11] A. A. Gaifullin, On the top homology group of Johnson kernel, arXiv: 1903.03864

[12] D. Johnson, “The structure of the Torelli group. III. The abelianization of $\mathscr{I}$”, Topology, 24:2 (1985), 127–144 | DOI | MR | Zbl

[13] R. Hain, “Infinitesimal presentations of the Torelli groups”, J. Amer. Math. Soc., 10:3 (1997), 597–651 | DOI | MR | Zbl

[14] M. Kassabov, A. Putman, “Equivariant group presentations and the second homology group of the Torelli group”, Math. Ann., 376:1-2 (2020), 227–241 ; arXiv: 1807.01338 | DOI | MR | Zbl

[15] J. Miller, P. Patzt, J. C. H. Wilson, “Central stability for the homology of congruence subgroups and the second homology of Torelli groups”, Adv. Math., 354 (2019), 106740, 45 pp. ; arXiv: 1704.04449 | DOI | MR | Zbl

[16] A. Kupers, O. Randal-Williams, “On the cohomology of Torelli groups”, Forum Math. Pi, 8 (2020), e7, 83 pp. ; arXiv: 1901.01862 | DOI | MR | Zbl

[17] A. Hatcher, D. Margalit, “Generating the Torelli group”, Enseign. Math. (2), 58:1-2 (2012), 165–188 ; arXiv: 1110.0876 | DOI | MR | Zbl

[18] B. Farb, D. Margalit, A primer on mapping class groups, Princeton Math. Ser., 49, Princeton Univ. Press, Princeton, NJ, 2012, xiv+472 pp. | DOI | MR | Zbl

[19] N. V. Ivanov, Subgroups of Teichmüller modular groups, Transl. Math. Monogr., 115, Amer. Math. Soc., Providence, RI, 1992, xii+127 pp. | DOI | MR | Zbl

[20] K. S. Brown, Cohomology of groups, Graduate Texts in Math., 87, Springer-Verlag, New York–Berlin, 1982, x+306 pp. | DOI | MR | MR | Zbl | Zbl

[21] L. Evens, The cohomology of groups, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1991, xii+159 pp. | MR | Zbl

[22] A. Putman, “Cutting and pasting in the Torelli group”, Geom. Topol., 11 (2007), 829–865 ; arXiv: math/0608373 | DOI | MR | Zbl

[23] J. S. Birman, A. Lubotzky, J. McCarthy, “Abelian and solvable subgroups of the mapping class groups”, Duke Math. J., 50:4 (1983), 1107–1120 | DOI | MR | Zbl

[24] J. S. Birman, R. Craggs, “The $\mu$-invariant of $3$-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented $2$-manifold”, Trans. Amer. Math. Soc., 237 (1978), 283–309 | DOI | MR | Zbl

[25] D. Johnson, “Quadratic forms and the Birman–Craggs homomorphisms”, Trans. Amer. Math. Soc., 261:1 (1980), 235–254 | DOI | MR | Zbl

[26] A. A. Gaifullin, “On an extension of the Birman–Craggs–Johnson homomorphism”, Russian Math. Surveys, 72:6 (2017), 1171–1173 | DOI | DOI | MR | Zbl

[27] S. Morita, “On the structure of the Torelli group and the Casson invariant”, Topology, 30:4 (1991), 603–621 | DOI | MR | Zbl

[28] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Interscience Publishers [John Wiley Sons, Inc.], New York–London–Sydney, 1966, xii+444 pp. | MR | MR | Zbl | Zbl