Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_5_a7, author = {A. P. Solodov}, title = {The exact domain of univalence on the class of holomorphic maps of a~disc into itself with an~interior and a~boundary fixed points}, journal = {Izvestiya. Mathematics }, pages = {1008--1035}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/} }
TY - JOUR AU - A. P. Solodov TI - The exact domain of univalence on the class of holomorphic maps of a~disc into itself with an~interior and a~boundary fixed points JO - Izvestiya. Mathematics PY - 2021 SP - 1008 EP - 1035 VL - 85 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/ LA - en ID - IM2_2021_85_5_a7 ER -
%0 Journal Article %A A. P. Solodov %T The exact domain of univalence on the class of holomorphic maps of a~disc into itself with an~interior and a~boundary fixed points %J Izvestiya. Mathematics %D 2021 %P 1008-1035 %V 85 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/ %G en %F IM2_2021_85_5_a7
A. P. Solodov. The exact domain of univalence on the class of holomorphic maps of a~disc into itself with an~interior and a~boundary fixed points. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 1008-1035. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/
[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl
[2] L. Bieberbach, “Über die koeffizienten derjenigen potenzreihen, welche eine schlichte abbildung des einheitskreises vermitteln”, Sitzungsber Preuß. Akad. Wiss., Phys.-Math. Kl., 138 (1916), 940–955 | Zbl
[3] L. de Branges, A proof of the Bieberbach conjecture, Preprint/LOMI E-5-84, Leningrad branch of the V. A. Steklov Mathematical Institute, Leningrad, 1984, 21 pp.
[4] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl
[5] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie. Zweites Heft. Konforme Abbildung einfach zusammenhängender Bereiche, B. G. Teubner, Leipzig und Berlin, 1913, iv+142 pp. | Zbl
[6] J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. (2), 17:1 (1915), 12–22 | DOI | MR | Zbl
[7] L. Špaček, “Příspěvek k teorii funkcí prostých [Contribution à la théorie des fonctions univalentes]”, Časopis Pěst. Mat. Fys., 62 (1932), 12–19 | Zbl
[8] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[9] J. Becker, “Löwnersche Differentlialgleichung und quasikonform fortsetzbare schlichte Funktionen”, J. Reine Angew. Math., 1972:255 (1972), 23–43 | DOI | MR | Zbl
[10] G. V. Kuzmina, “Chislennoe opredelenie radiusov odnolistnosti analiticheskikh funktsii”, Raboty po priblizhennomu analizu, Tr. MIAN SSSR, 53, Izd-vo AN SSSR, M.–L., 1959, 192–235 | MR | Zbl
[11] D. Aharonov, U. Elias, “Univalence criteria depending on parameters”, Anal. Math. Phys., 4:1-2 (2014), 23–34 | DOI | MR | Zbl
[12] D. Blezu, N. N. Pascu, “Some univalence criteria”, Demonstratio Math., 35:1 (2002), 31–34 | DOI | MR | Zbl
[13] M. Chuaqui, “A unified approach to univalence criteria in the unit disc”, Proc. Amer. Math. Soc., 123:2 (1995), 441–453 | DOI | MR | Zbl
[14] M. Nunokawa, J. Sokół, “On some conditions for $p$-valency”, J. Comput. Anal. Appl., 28:2 (2020), 219–225
[15] S. Ozaki, M. Nunokawa, “The Schwarzian derivative and univalent functions”, Proc. Amer. Math. Soc., 33:2 (1972), 392–394 | DOI | MR | Zbl
[16] D. Răducanu, H. Orhan, E. Deniz, “On some sufficient conditions for univalence”, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 18:2 (2010), 217–222 | MR | Zbl
[17] F. G. Avkhadiev, L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys, 30:4 (1975), 1–63 | DOI | MR | Zbl
[18] Chr. Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, 25, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl
[19] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl
[20] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl
[21] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl
[22] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl
[23] J. Becker, Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl
[24] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl
[25] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | DOI | MR | Zbl
[26] V. V. Goryainov, “Holomorphic mappings of a strip into itself with bounded distortion at infinity”, Proc. Steklov Inst. Math., 298:1 (2017), 94–103 | DOI | DOI | MR | Zbl
[27] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimate of univalence domains for holomorphic mappings of the unit disk into itself keeping its diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83 | DOI | DOI | Zbl
[28] O. S. Kudryavtseva, A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Sb. Math., 211:11 (2020), 1592–1611 | DOI | DOI | MR | Zbl
[29] A. P. Solodov, “Strengthening of Landau's theorem for holomorphic self-mappings of a disk with fixed points”, Math. Notes, 108:4 (2020), 626–628 | DOI | DOI | MR | Zbl
[30] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[31] C. Carathéodory, “Über die Winkelderivierten von beschränkten analytischen Funktionen”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1929 (1929), 39–54 | Zbl
[32] E. Landau, G. Valiron, “A deduction from Schwarz's lemma”, J. London Math. Soc., 4:3 (1929), 162–163 | DOI | MR | Zbl
[33] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | DOI | MR | Zbl