The exact domain of univalence on the class of holomorphic maps of a~disc into itself with an~interior and a~boundary fixed points
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 1008-1035.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of identifying domains of univalence on classes of holomorphic maps of the unit disc into itself. In 1926 E. Landau found the exact value of the radius of the disc of univalence on the class of such maps with a given value of the derivative at an interior fixed point. In 2017 V. V. Goryainov discovered the existence of univalence domains on classes of holomorphic maps of the unit disc into itself with an interior and a boundary fixed points, with a restriction on the value of the angular derivative at the boundary fixed point. However, the question of finding unimprovable domains of univalence remained open. In this paper, this extremal problem is solved completely: we find an exact univalence domain on the indicated class of holomorphic maps of the disc into itself. This result is a strengthening of Landau's theorem for functions of the corresponding class.
Keywords: holomorphic map, fixed points, angular derivative
Mots-clés : univalence domain.
@article{IM2_2021_85_5_a7,
     author = {A. P. Solodov},
     title = {The exact domain of  univalence on the class of  holomorphic maps of  a~disc into itself with an~interior and a~boundary fixed points},
     journal = {Izvestiya. Mathematics },
     pages = {1008--1035},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/}
}
TY  - JOUR
AU  - A. P. Solodov
TI  - The exact domain of  univalence on the class of  holomorphic maps of  a~disc into itself with an~interior and a~boundary fixed points
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 1008
EP  - 1035
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/
LA  - en
ID  - IM2_2021_85_5_a7
ER  - 
%0 Journal Article
%A A. P. Solodov
%T The exact domain of  univalence on the class of  holomorphic maps of  a~disc into itself with an~interior and a~boundary fixed points
%J Izvestiya. Mathematics 
%D 2021
%P 1008-1035
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/
%G en
%F IM2_2021_85_5_a7
A. P. Solodov. The exact domain of  univalence on the class of  holomorphic maps of  a~disc into itself with an~interior and a~boundary fixed points. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 1008-1035. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a7/

[1] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | MR | Zbl | Zbl

[2] L. Bieberbach, “Über die koeffizienten derjenigen potenzreihen, welche eine schlichte abbildung des einheitskreises vermitteln”, Sitzungsber Preuß. Akad. Wiss., Phys.-Math. Kl., 138 (1916), 940–955 | Zbl

[3] L. de Branges, A proof of the Bieberbach conjecture, Preprint/LOMI E-5-84, Leningrad branch of the V. A. Steklov Mathematical Institute, Leningrad, 1984, 21 pp.

[4] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl

[5] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie. Zweites Heft. Konforme Abbildung einfach zusammenhängender Bereiche, B. G. Teubner, Leipzig und Berlin, 1913, iv+142 pp. | Zbl

[6] J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. (2), 17:1 (1915), 12–22 | DOI | MR | Zbl

[7] L. Špaček, “Příspěvek k teorii funkcí prostých [Contribution à la théorie des fonctions univalentes]”, Časopis Pěst. Mat. Fys., 62 (1932), 12–19 | Zbl

[8] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[9] J. Becker, “Löwnersche Differentlialgleichung und quasikonform fortsetzbare schlichte Funktionen”, J. Reine Angew. Math., 1972:255 (1972), 23–43 | DOI | MR | Zbl

[10] G. V. Kuzmina, “Chislennoe opredelenie radiusov odnolistnosti analiticheskikh funktsii”, Raboty po priblizhennomu analizu, Tr. MIAN SSSR, 53, Izd-vo AN SSSR, M.–L., 1959, 192–235 | MR | Zbl

[11] D. Aharonov, U. Elias, “Univalence criteria depending on parameters”, Anal. Math. Phys., 4:1-2 (2014), 23–34 | DOI | MR | Zbl

[12] D. Blezu, N. N. Pascu, “Some univalence criteria”, Demonstratio Math., 35:1 (2002), 31–34 | DOI | MR | Zbl

[13] M. Chuaqui, “A unified approach to univalence criteria in the unit disc”, Proc. Amer. Math. Soc., 123:2 (1995), 441–453 | DOI | MR | Zbl

[14] M. Nunokawa, J. Sokół, “On some conditions for $p$-valency”, J. Comput. Anal. Appl., 28:2 (2020), 219–225

[15] S. Ozaki, M. Nunokawa, “The Schwarzian derivative and univalent functions”, Proc. Amer. Math. Soc., 33:2 (1972), 392–394 | DOI | MR | Zbl

[16] D. Răducanu, H. Orhan, E. Deniz, “On some sufficient conditions for univalence”, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 18:2 (2010), 217–222 | MR | Zbl

[17] F. G. Avkhadiev, L. A. Aksent'ev, “The main results on sufficient conditions for an analytic function to be schlicht”, Russian Math. Surveys, 30:4 (1975), 1–63 | DOI | MR | Zbl

[18] Chr. Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, 25, Vandenhoeck Ruprecht, Göttingen, 1975, 376 pp. | MR | Zbl

[19] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983, xiv+382 pp. | MR | Zbl

[20] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl

[21] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954, 236 pp. | MR | Zbl

[22] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl

[23] J. Becker, Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl

[24] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl

[25] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | DOI | MR | Zbl

[26] V. V. Goryainov, “Holomorphic mappings of a strip into itself with bounded distortion at infinity”, Proc. Steklov Inst. Math., 298:1 (2017), 94–103 | DOI | DOI | MR | Zbl

[27] O. S. Kudryavtseva, A. P. Solodov, “Two-sided estimate of univalence domains for holomorphic mappings of the unit disk into itself keeping its diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83 | DOI | DOI | Zbl

[28] O. S. Kudryavtseva, A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Sb. Math., 211:11 (2020), 1592–1611 | DOI | DOI | MR | Zbl

[29] A. P. Solodov, “Strengthening of Landau's theorem for holomorphic self-mappings of a disk with fixed points”, Math. Notes, 108:4 (2020), 626–628 | DOI | DOI | MR | Zbl

[30] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[31] C. Carathéodory, “Über die Winkelderivierten von beschränkten analytischen Funktionen”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1929 (1929), 39–54 | Zbl

[32] E. Landau, G. Valiron, “A deduction from Schwarz's lemma”, J. London Math. Soc., 4:3 (1929), 162–163 | DOI | MR | Zbl

[33] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | DOI | MR | Zbl