Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_5_a6, author = {V. P. Platonov and G. V. Fedorov}, title = {On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields}, journal = {Izvestiya. Mathematics }, pages = {972--1007}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/} }
TY - JOUR AU - V. P. Platonov AU - G. V. Fedorov TI - On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields JO - Izvestiya. Mathematics PY - 2021 SP - 972 EP - 1007 VL - 85 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/ LA - en ID - IM2_2021_85_5_a6 ER -
%0 Journal Article %A V. P. Platonov %A G. V. Fedorov %T On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields %J Izvestiya. Mathematics %D 2021 %P 972-1007 %V 85 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/ %G en %F IM2_2021_85_5_a6
V. P. Platonov; G. V. Fedorov. On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 972-1007. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/