On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 972-1007

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical problem of the periodicity of continued fractions for elements of hyperelliptic fields has a long and deep history. This problem has up to now been far from completely solved. A surprising result was obtained in [1] for quadratic extensions defined by cubic polynomials with coefficients in the field $\mathbb{Q}$ of rational numbers: except for trivial cases there are only three (up to equivalence) cubic polynomials over $\mathbb{Q}$ whose square root has a periodic continued fraction expansion in the field $\mathbb{Q}((x))$ of formal power series. In view of the results in [1], we completely solve the classification problem for polynomials $f$ with periodic continued fraction expansion of $\sqrt{f}$ in elliptic fields with the field of rational numbers as the field of constants.
Keywords: periodicity problem, continued fractions, elliptic curves, hyperelliptic fields, Jacobian variety, divisor class group, symbolic calculations, computer algebra.
@article{IM2_2021_85_5_a6,
     author = {V. P. Platonov and G. V. Fedorov},
     title = {On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields},
     journal = {Izvestiya. Mathematics },
     pages = {972--1007},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - G. V. Fedorov
TI  - On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 972
EP  - 1007
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/
LA  - en
ID  - IM2_2021_85_5_a6
ER  - 
%0 Journal Article
%A V. P. Platonov
%A G. V. Fedorov
%T On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
%J Izvestiya. Mathematics 
%D 2021
%P 972-1007
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/
%G en
%F IM2_2021_85_5_a6
V. P. Platonov; G. V. Fedorov. On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 972-1007. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/