On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 972-1007.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical problem of the periodicity of continued fractions for elements of hyperelliptic fields has a long and deep history. This problem has up to now been far from completely solved. A surprising result was obtained in [1] for quadratic extensions defined by cubic polynomials with coefficients in the field $\mathbb{Q}$ of rational numbers: except for trivial cases there are only three (up to equivalence) cubic polynomials over $\mathbb{Q}$ whose square root has a periodic continued fraction expansion in the field $\mathbb{Q}((x))$ of formal power series. In view of the results in [1], we completely solve the classification problem for polynomials $f$ with periodic continued fraction expansion of $\sqrt{f}$ in elliptic fields with the field of rational numbers as the field of constants.
Keywords: periodicity problem, continued fractions, elliptic curves, hyperelliptic fields, Jacobian variety, divisor class group, symbolic calculations, computer algebra.
@article{IM2_2021_85_5_a6,
     author = {V. P. Platonov and G. V. Fedorov},
     title = {On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields},
     journal = {Izvestiya. Mathematics },
     pages = {972--1007},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - G. V. Fedorov
TI  - On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 972
EP  - 1007
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/
LA  - en
ID  - IM2_2021_85_5_a6
ER  - 
%0 Journal Article
%A V. P. Platonov
%A G. V. Fedorov
%T On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields
%J Izvestiya. Mathematics 
%D 2021
%P 972-1007
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/
%G en
%F IM2_2021_85_5_a6
V. P. Platonov; G. V. Fedorov. On the classification problem~for~polynomials~$f$ with a~periodic continued fraction expansion of~$\sqrt{f}$ in hyperelliptic fields. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 972-1007. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a6/

[1] V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | DOI | MR | Zbl

[2] E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–206 | DOI | MR | Zbl

[3] W. W. Adams, M. J. Razar, “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc. (3), 41:3 (1980), 481–498 | DOI | MR | Zbl

[4] T. G. Berry, “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math. (Basel), 55:3 (1990), 259–266 | DOI | MR | Zbl

[5] W. M. Schmidt, “On continued fractions and diophantine approximation in power series fields”, Acta Arith., 95:2 (2000), 139–166 | DOI | MR | Zbl

[6] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl

[7] V. P. Platonov, “Arithmetic of quadratic fields and torsion in Jacobians”, Dokl. Math., 81:1 (2010), 55–57 | DOI | MR | Zbl

[8] V. P. Platonov, M. M. Petrunin, “Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | DOI | MR | Zbl

[9] V. V. Benyash-Krivets, V. P. Platonov, “Groups of $S$-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl

[10] V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | DOI | MR | Zbl

[11] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued rational fractions in hyperelliptic fields and the Mumford representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | DOI | MR | Zbl

[12] V. P. Platonov, M. M. Petrunin, “$S$-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | DOI | MR | Zbl

[13] G. V. Fedorov, “Ob ogranichennosti dlin periodov nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei nad polem ratsionalnykh chisel”, Chebyshevskii sb., 20:4 (2019), 357–370 | DOI | MR | Zbl

[14] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | DOI | MR | Zbl

[15] D. S. Kubert, “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl

[16] V. P. Platonov, M. M. Petrunin, Yu. N. Shteinikov, “On the finiteness of the number of elliptic fields with given degrees of $S$-units and periodic expansion of $\sqrt{f}$”, Dokl. Math., 100:2 (2019), 440–444 | DOI | DOI | MR | Zbl

[17] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | DOI | MR | Zbl

[18] A. J. van der Poorten, Xuan Chuong Tran, “Periodic continued fractions in elliptic function fields”, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., 2369, Springer, Berlin, 2002, 390–404 | DOI | MR | Zbl

[19] V. P. Platonov, G. V. Fedorov, “Kriterii periodichnosti nepreryvnykh drobei klyuchevykh elementov giperellipticheskikh polei”, Chebyshevskii sb., 20:1 (2019), 248–260 | DOI | Zbl

[20] G. V. Fedorov, “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517 | DOI | DOI

[21] V. P. Platonov, G. V. Fedorov, “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Math. Surveys, 75:4 (2020), 785–787 | DOI | DOI | MR | Zbl

[22] V. P. Platonov, M. M. Petrunin, V. S. Zhgoon, “On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials over number fields”, Dokl. Math., 102:1 (2020), 288–292 | DOI | DOI

[23] V. P. Platonov, M. M. Petrunin, “On the finiteness of the number of expansions into a continued fraction of $\sqrt{f}$ for cubic polynomials over algebraic number fields”, Dokl. Math., 102:3 (2020), 487–492 | DOI | DOI

[24] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields over quadratic constant field”, Dokl. Math., 98:2 (2018), 430–434 | DOI | DOI | Zbl

[25] V. P. Platonov, V. S. Zhgoon, M. M. Petrunin, Yu. N. Shteinikov, “On the finiteness of hyperelliptic fields with special properties and periodic expansion of $\sqrt f$”, Dokl. Math., 98:3 (2018), 641–645 | DOI | DOI | Zbl

[26] G. V. Fedorov, “On $S$-units for valuations of the second degree in hyperelliptic fields”, Izv. Math., 84:2 (2020), 392–435 | DOI | DOI | MR | Zbl

[27] G. V. Fedorov, “Periodicheskie nepreryvnye drobi i $S$-edinitsy s normirovaniyami vtoroi stepeni v giperellipticheskikh polyakh”, Chebyshevskii sb., 19:3 (2018), 282–297 | DOI | Zbl

[28] B. Mazur, “Rational points on modular curves”, Modular functions of one variable V (Univ. Bonn, Bonn, 1976), Lecture Notes in Math., 601, Springer, Berlin, 1977, 107–148 | DOI | MR | Zbl

[29] Z. L. Scherr, Rational polynomial Pell equations, Ph.D. thesis, Univ. of Michigan, 2013, v+81 pp. https://deepblue.lib.umich.edu/handle/2027.42/100026