Arithmetic of certain $\ell$-extensions ramified at three places. II
Izvestiya. Mathematics, Tome 85 (2021) no. 5, pp. 953-971
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\ell$ be a regular odd prime, $k$ the $\ell$ th cyclotomic field and $K=k(\sqrt[\ell]{a})$, where $a$ is a positive integer. Under the assumption that there are exactly three places not over $\ell$ that ramify in $K_\infty/k_\infty$, we continue to study the structure of the Tate module (Iwasawa module) $T_\ell(K_\infty)$ as a Galois module. In the case $\ell=3$, we prove that for finite $T_\ell(K_\infty)$ we have $|T_\ell(K_\infty)|\,{=}\,\ell^r$ for some odd positive integer $r$. Under the same assumptions, if $\overline T_\ell(K_\infty)$ is the Galois group of the maximal unramified Abelian $\ell$-extension of $K_\infty$, then the kernel of the natural epimorphism $\overline T_\ell(K_\infty)\to T_\ell (K_\infty)$ is of order $9$. Some other results are obtained.
Keywords:
Iwasawa theory, Tate module, extensions with restricted ramification.
@article{IM2_2021_85_5_a5,
author = {L. V. Kuz'min},
title = {Arithmetic of certain $\ell$-extensions ramified at three {places.~II}},
journal = {Izvestiya. Mathematics},
pages = {953--971},
year = {2021},
volume = {85},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a5/}
}
L. V. Kuz'min. Arithmetic of certain $\ell$-extensions ramified at three places. II. Izvestiya. Mathematics, Tome 85 (2021) no. 5, pp. 953-971. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a5/
[1] L. V. Kuz'min, “Arithmetic of certain $\ell $-extensions ramified at three places”, Proc. Steklov Inst. Math., 307 (2019), 65–84 | DOI | DOI | MR | Zbl
[2] L. V. Kuz'min, “An analog of the Riemann–Hurwitz formula for one type of $l$-extension of algebraic number fields”, Math. USSR-Izv., 36:2 (1991), 325–347 | DOI | MR | Zbl
[3] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR-Izv., 6:2 (1972), 263–321 | DOI | MR | Zbl
[4] L. V. Kuz'min, “New explicit formulas for the norm residue symbol, and their applications”, Math. USSR-Izv., 37:3 (1991), 555–586 | DOI | MR | Zbl