Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_5_a4, author = {T. V. Dudnikova}, title = {Convergence to stationary non-equilibrium states for {Klein--Gordon} equations}, journal = {Izvestiya. Mathematics }, pages = {932--952}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a4/} }
T. V. Dudnikova. Convergence to stationary non-equilibrium states for Klein--Gordon equations. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 932-952. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a4/
[1] F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier law: a challenge to theorists”, Mathematical physics 2000, Imp. Coll. Press, London, 2000, 128–150 | DOI | MR | Zbl
[2] H. Spohn, J. L. Lebowitz, “Stationary non-equilibrium states of infinite harmonic systems”, Comm. Math. Phys., 54:2 (1977), 97–120 | DOI | MR
[3] J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Comm. Math. Phys., 201:3 (1999), 657–697 | DOI | MR | Zbl
[4] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80 | DOI | MR
[5] Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Phys., 921, ed. S. Lepri, Springer, Cham, 2016, xi+411 pp. | DOI | MR
[6] C. Boldrighini, A. Pellegrinotti, L. Triolo, “Convergence to stationary states for infinite harmonic systems”, J. Statist. Phys., 30:1 (1983), 123–155 | DOI | MR
[7] T. V. Dudnikova, A. I. Komech, “On a two-temperature problem for the Klein–Gordon equation”, Theory Probab. Appl., 50:4 (2006), 582–611 | DOI | DOI | MR | Zbl
[8] T. V. Dudnikova, “Convergence to stationary states and energy current for infinite harmonic crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453 | DOI | MR | Zbl
[9] T. V. Dudnikova, A. I. Komech, E. A. Kopylova, Yu. M. Suhov, “On convergence to equilibrium distribution. I. The Klein–Gordon equation with mixing”, Comm. Math. Phys., 225:1 (2002), 1–32 | DOI | MR | Zbl
[10] B. R. Vainberg, “Behavior for large time of solutions of the Klein-Gordon equation”, Trans. Moscow Math. Soc., 30 (1976), 139–158 | MR | Zbl
[11] E. A. Kopylova, “Stabilization of statistical solutions of the Klein–Gordon equation”, Moscow Univ. Math. Bull., 41:2 (1986), 72–75 | MR | Zbl
[12] V. P. Mikhailov, Partial differential equations, Moscow, Mir Publishers, 1978, 396 pp. | MR | MR | Zbl | Zbl
[13] L. Hörmander, The analysis of linear partial differential operators, v. III, Grundlehren Math. Wiss., 274, Pseudo-differential operators, Springer-Verlag, Berlin, 1985, viii+525 pp. | MR | MR | Zbl
[14] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[15] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | MR | Zbl | Zbl
[16] T. V. Dudnikova, A. I. Komech, H. Spohn, “On a two-temperature problem for wave equation”, Markov Process. Related Fields, 8:1 (2002), 43–80 | MR | Zbl
[17] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964, xiv+384 pp. | MR | MR | Zbl | Zbl
[18] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math., 105, Cambridge Univ. Press, Cambridge, 1993, x+237 pp. | DOI | MR | Zbl
[19] M. I. Vishik, A. V. Fursikov, Mathematical problems of statistical hydromechanics, Math. Appl. (Soviet Ser.), 9, Kluwer Acad. Publ., Dordrecht, 1988, vii+576 pp. | DOI | MR | MR | Zbl | Zbl
[20] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl