Convergence to stationary non-equilibrium states for Klein--Gordon equations
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 932-952.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Klein–Gordon equations in $\mathbb{R}^d$, $d\geqslant2$, with constant or variable coefficients and study the Cauchy problem with random initial data. We investigate the distribution $\mu_t$ of a random solution at moments of time $t\in\mathbb{R}$. We prove the convergence of correlation functions of the measure $\mu_t$ to a limit as $t\to\infty$. The explicit formulae for the limiting correlation functions and the energy current density (in mean) are obtained in terms of the initial covariance. Furthermore, we prove the weak convergence of $\mu_t$ to a limiting measure as $t\to\infty$. We apply these results to the case when the initial random function has the Gibbs distribution with different temperatures in some infinite “parts” of the space. In this case, we find states in which the limiting energy current density does not vanish. Thus, for the model being studied, we construct a new class of stationary non-equilibrium states.
Keywords: Cauchy problem, random initial data, weak convergence of measures, Gibbs measures, energy current density, non-equilibrium state.
Mots-clés : Klein–Gordon equations
@article{IM2_2021_85_5_a4,
     author = {T. V. Dudnikova},
     title = {Convergence to stationary non-equilibrium states for {Klein--Gordon} equations},
     journal = {Izvestiya. Mathematics },
     pages = {932--952},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a4/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - Convergence to stationary non-equilibrium states for Klein--Gordon equations
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 932
EP  - 952
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a4/
LA  - en
ID  - IM2_2021_85_5_a4
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T Convergence to stationary non-equilibrium states for Klein--Gordon equations
%J Izvestiya. Mathematics 
%D 2021
%P 932-952
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a4/
%G en
%F IM2_2021_85_5_a4
T. V. Dudnikova. Convergence to stationary non-equilibrium states for Klein--Gordon equations. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 932-952. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a4/

[1] F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier law: a challenge to theorists”, Mathematical physics 2000, Imp. Coll. Press, London, 2000, 128–150 | DOI | MR | Zbl

[2] H. Spohn, J. L. Lebowitz, “Stationary non-equilibrium states of infinite harmonic systems”, Comm. Math. Phys., 54:2 (1977), 97–120 | DOI | MR

[3] J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures”, Comm. Math. Phys., 201:3 (1999), 657–697 | DOI | MR | Zbl

[4] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Phys. Rep., 377:1 (2003), 1–80 | DOI | MR

[5] Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Phys., 921, ed. S. Lepri, Springer, Cham, 2016, xi+411 pp. | DOI | MR

[6] C. Boldrighini, A. Pellegrinotti, L. Triolo, “Convergence to stationary states for infinite harmonic systems”, J. Statist. Phys., 30:1 (1983), 123–155 | DOI | MR

[7] T. V. Dudnikova, A. I. Komech, “On a two-temperature problem for the Klein–Gordon equation”, Theory Probab. Appl., 50:4 (2006), 582–611 | DOI | DOI | MR | Zbl

[8] T. V. Dudnikova, “Convergence to stationary states and energy current for infinite harmonic crystals”, Russ. J. Math. Phys., 26:4 (2019), 428–453 | DOI | MR | Zbl

[9] T. V. Dudnikova, A. I. Komech, E. A. Kopylova, Yu. M. Suhov, “On convergence to equilibrium distribution. I. The Klein–Gordon equation with mixing”, Comm. Math. Phys., 225:1 (2002), 1–32 | DOI | MR | Zbl

[10] B. R. Vainberg, “Behavior for large time of solutions of the Klein-Gordon equation”, Trans. Moscow Math. Soc., 30 (1976), 139–158 | MR | Zbl

[11] E. A. Kopylova, “Stabilization of statistical solutions of the Klein–Gordon equation”, Moscow Univ. Math. Bull., 41:2 (1986), 72–75 | MR | Zbl

[12] V. P. Mikhailov, Partial differential equations, Moscow, Mir Publishers, 1978, 396 pp. | MR | MR | Zbl | Zbl

[13] L. Hörmander, The analysis of linear partial differential operators, v. III, Grundlehren Math. Wiss., 274, Pseudo-differential operators, Springer-Verlag, Berlin, 1985, viii+525 pp. | MR | MR | Zbl

[14] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[15] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982, x+486 pp. | DOI | MR | MR | Zbl | Zbl

[16] T. V. Dudnikova, A. I. Komech, H. Spohn, “On a two-temperature problem for wave equation”, Markov Process. Related Fields, 8:1 (2002), 43–80 | MR | Zbl

[17] I. M. Gel'fand, N. Ya. Vilenkin, Generalized functions, v. 4, Applications of harmonic analysis, Academic Press, New York–London, 1964, xiv+384 pp. | MR | MR | Zbl | Zbl

[18] C. D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Math., 105, Cambridge Univ. Press, Cambridge, 1993, x+237 pp. | DOI | MR | Zbl

[19] M. I. Vishik, A. V. Fursikov, Mathematical problems of statistical hydromechanics, Math. Appl. (Soviet Ser.), 9, Kluwer Acad. Publ., Dordrecht, 1988, vii+576 pp. | DOI | MR | MR | Zbl | Zbl

[20] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl