On distributions of homogeneous and convex functions in Gaussian random variables
Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 852-882.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain broad conditions under which distributions of homogeneous functions in Gaussian and more general random variables have bounded densities or even densities of bounded variation or densities with finite Fisher information. Analogous results are obtained for convex functions. Applications to maxima of quadratic forms are given.
Keywords: distribution density, quadratic form in Gaussian random variables, distribution of a homogeneous function.
@article{IM2_2021_85_5_a2,
     author = {V. I. Bogachev and E. D. Kosov and S. N. Popova},
     title = {On distributions of  homogeneous and convex functions in {Gaussian} random variables},
     journal = {Izvestiya. Mathematics },
     pages = {852--882},
     publisher = {mathdoc},
     volume = {85},
     number = {5},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - E. D. Kosov
AU  - S. N. Popova
TI  - On distributions of  homogeneous and convex functions in Gaussian random variables
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 852
EP  - 882
VL  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/
LA  - en
ID  - IM2_2021_85_5_a2
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A E. D. Kosov
%A S. N. Popova
%T On distributions of  homogeneous and convex functions in Gaussian random variables
%J Izvestiya. Mathematics 
%D 2021
%P 852-882
%V 85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/
%G en
%F IM2_2021_85_5_a2
V. I. Bogachev; E. D. Kosov; S. N. Popova. On distributions of  homogeneous and convex functions in Gaussian random variables. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 852-882. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/

[1] R. J. Adler, “On excursion sets, tube formulas and maxima of random fields”, Ann. Appl. Probab., 10:1 (2000), 1–74 | DOI | MR | Zbl

[2] L. M. Arutyunyan, I. S. Yaroslavtsev, “On measurable polynomials on infinite-dimensional spaces”, Dokl. Math., 87:2 (2013), 214–217 | DOI | DOI | MR | Zbl

[3] V. Bally, L. Caramellino, “Convergence and regularity of probability laws by using an interpolation method”, Ann. Probab., 45:2 (2017), 1110–1159 | DOI | MR | Zbl

[4] V. Bentkus, F. Götze, “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490 | DOI | MR | Zbl

[5] V. I. Bogachev, “Functionals of random processes and infinite-dimensional oscillatory integrals connected with them”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 235–266 | DOI | MR | Zbl

[6] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl

[7] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl

[8] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis. Current trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | DOI | MR | Zbl

[9] V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749 | DOI | DOI | MR | Zbl

[10] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl

[11] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl

[12] V. I. Bogachev, O. G. Smolyanov, “Analytic properties of infinite-dimensional distributions”, Russian Math. Surveys, 45:3 (1990), 1–104 | DOI | MR | Zbl

[13] V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl

[14] V. Chernozhukov, D. Chetverikov, K. Kato, “Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors”, Ann. Statist., 41:6 (2013), 2786–2819 | DOI | MR | Zbl

[15] V. Chernozhukov, D. Chetverikov, K. Kato, “Comparison and anti-concentration bounds for maxima of Gaussian random vectors”, Probab. Theory Related Fields, 162:1-2 (2015), 47–70 | DOI | MR | Zbl

[16] Yu. A. Davydov, M. A. Lifshits, N. V. Smorodina, Local properties of distributions of stochastic functionals, Transl. Math. Monogr., 173, Amer. Math. Soc., Providence, RI, 1998, xiv+184 pp. | DOI | MR | MR | Zbl | Zbl

[17] W. F. Donoghue, Jr., Distributions and Fourier transforms, Pure Appl. Math., 32, Academic Press, New York, 1969, viii+315 pp. | MR | Zbl

[18] F. Götze, A. N. Tikhomirov, “Asymptotic distribution of quadratic forms”, Ann. Probab., 27:2 (1999), 1072–1098 | DOI | MR | Zbl

[19] F. Götze, A. Tikhomirov, “Asymptotic distribution of quadratic forms and applications”, J. Theoret. Probab., 15:2 (2002), 423–475 | DOI | MR | Zbl

[20] F. Götze, A. N. Tikhomirov, “Asymptotic expansions in non-central limit theorems for quadratic forms”, J. Theoret. Probab., 18:4 (2005), 757–811 | DOI | MR | Zbl

[21] F. Götze, A. Yu. Zaitsev, “Explicit rates of approximation in the CLT for quadratic forms”, Ann. Probab., 42:1 (2014), 354–397 | DOI | MR | Zbl

[22] Y. Koike, “Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data”, Ann. Statist., 47:3 (2019), 1663–1687 | DOI | MR | Zbl

[23] S. Kuriki, A. Takemura, “Tail probabilities of the maxima of multilinear forms and their applications”, Ann. Statist., 29:2 (2001), 328–371 | DOI | MR | Zbl

[24] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl

[25] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp. | DOI | MR | Zbl

[26] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1995, xii+266 pp. | DOI | MR | Zbl

[27] F. G. Tricomi, “Asymptotische Eigenschaften der unvollständigen Gammafunktion”, Math. Z., 53 (1950), 136–148 | DOI | MR | Zbl

[28] F. G. Viens, A. B. Vizcarra, “Supremum concentration inequality and modulus of continuity for sub-$n$th chaos processes”, J. Funct. Anal., 248:1 (2007), 1–26 | DOI | MR | Zbl

[29] WanSoo T. Rhee, “On the distribution of the norm for a Gaussian measure”, Ann. Inst. H. Poincaré Probab. Statist., 20:3 (1984), 277–286 | MR | Zbl

[30] WanSoo Rhee, M. Talagrand, “Bad rates of convergence for the central limit theorem in Hilbert space”, Ann. Probab., 12:3 (1984), 843–850 | DOI | MR | Zbl

[31] WanSoo Rhee, M. Talagrand, “Uniform convexity and the distribution of the norm for a Gaussian measure”, Probab. Theory Relat. Fields, 71:1 (1986), 59–67 | DOI | MR | Zbl

[32] A. W. Roberts, D. E. Varberg, Convex functions, Pure Appl. Math., 57, Academic Press, New York–London, 1973, xx+300 pp. | MR | Zbl

[33] N. V. Smorodina, “An asymptotic expansion of the distribution of a homogeneous functional of a strictly stable vector”, Theory Probab. Appl., 41:1 (1997), 91–115 | DOI | DOI | MR | Zbl