Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_5_a2, author = {V. I. Bogachev and E. D. Kosov and S. N. Popova}, title = {On distributions of homogeneous and convex functions in {Gaussian} random variables}, journal = {Izvestiya. Mathematics }, pages = {852--882}, publisher = {mathdoc}, volume = {85}, number = {5}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/} }
TY - JOUR AU - V. I. Bogachev AU - E. D. Kosov AU - S. N. Popova TI - On distributions of homogeneous and convex functions in Gaussian random variables JO - Izvestiya. Mathematics PY - 2021 SP - 852 EP - 882 VL - 85 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/ LA - en ID - IM2_2021_85_5_a2 ER -
V. I. Bogachev; E. D. Kosov; S. N. Popova. On distributions of homogeneous and convex functions in Gaussian random variables. Izvestiya. Mathematics , Tome 85 (2021) no. 5, pp. 852-882. http://geodesic.mathdoc.fr/item/IM2_2021_85_5_a2/
[1] R. J. Adler, “On excursion sets, tube formulas and maxima of random fields”, Ann. Appl. Probab., 10:1 (2000), 1–74 | DOI | MR | Zbl
[2] L. M. Arutyunyan, I. S. Yaroslavtsev, “On measurable polynomials on infinite-dimensional spaces”, Dokl. Math., 87:2 (2013), 214–217 | DOI | DOI | MR | Zbl
[3] V. Bally, L. Caramellino, “Convergence and regularity of probability laws by using an interpolation method”, Ann. Probab., 45:2 (2017), 1110–1159 | DOI | MR | Zbl
[4] V. Bentkus, F. Götze, “Optimal rates of convergence in the CLT for quadratic forms”, Ann. Probab., 24:1 (1996), 466–490 | DOI | MR | Zbl
[5] V. I. Bogachev, “Functionals of random processes and infinite-dimensional oscillatory integrals connected with them”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 235–266 | DOI | MR | Zbl
[6] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl
[7] V. I. Bogachev, Differentiable measures and the Malliavin calculus, Math. Surveys Monogr., 164, Amer. Math. Soc., Providence, RI, 2010, xvi+488 pp. | DOI | MR | Zbl
[8] V. I. Bogachev, “Gaussian measures on infinite-dimensional spaces”, Real and stochastic analysis. Current trends, World Sci. Publ., Hackensack, NJ, 2014, 1–83 | DOI | MR | Zbl
[9] V. I. Bogachev, “Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures”, Russian Math. Surveys, 71:4 (2016), 703–749 | DOI | DOI | MR | Zbl
[10] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[11] V. I. Bogachev, E. D. Kosov, G. I. Zelenov, “Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy–Landau–Littlewood inequality”, Trans. Amer. Math. Soc., 370:6 (2018), 4401–4432 | DOI | MR | Zbl
[12] V. I. Bogachev, O. G. Smolyanov, “Analytic properties of infinite-dimensional distributions”, Russian Math. Surveys, 45:3 (1990), 1–104 | DOI | MR | Zbl
[13] V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer Monogr. Math., Springer, Cham, 2017, x+456 pp. | DOI | MR | Zbl
[14] V. Chernozhukov, D. Chetverikov, K. Kato, “Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors”, Ann. Statist., 41:6 (2013), 2786–2819 | DOI | MR | Zbl
[15] V. Chernozhukov, D. Chetverikov, K. Kato, “Comparison and anti-concentration bounds for maxima of Gaussian random vectors”, Probab. Theory Related Fields, 162:1-2 (2015), 47–70 | DOI | MR | Zbl
[16] Yu. A. Davydov, M. A. Lifshits, N. V. Smorodina, Local properties of distributions of stochastic functionals, Transl. Math. Monogr., 173, Amer. Math. Soc., Providence, RI, 1998, xiv+184 pp. | DOI | MR | MR | Zbl | Zbl
[17] W. F. Donoghue, Jr., Distributions and Fourier transforms, Pure Appl. Math., 32, Academic Press, New York, 1969, viii+315 pp. | MR | Zbl
[18] F. Götze, A. N. Tikhomirov, “Asymptotic distribution of quadratic forms”, Ann. Probab., 27:2 (1999), 1072–1098 | DOI | MR | Zbl
[19] F. Götze, A. Tikhomirov, “Asymptotic distribution of quadratic forms and applications”, J. Theoret. Probab., 15:2 (2002), 423–475 | DOI | MR | Zbl
[20] F. Götze, A. N. Tikhomirov, “Asymptotic expansions in non-central limit theorems for quadratic forms”, J. Theoret. Probab., 18:4 (2005), 757–811 | DOI | MR | Zbl
[21] F. Götze, A. Yu. Zaitsev, “Explicit rates of approximation in the CLT for quadratic forms”, Ann. Probab., 42:1 (2014), 354–397 | DOI | MR | Zbl
[22] Y. Koike, “Gaussian approximation of maxima of Wiener functionals and its application to high-frequency data”, Ann. Statist., 47:3 (2019), 1663–1687 | DOI | MR | Zbl
[23] S. Kuriki, A. Takemura, “Tail probabilities of the maxima of multilinear forms and their applications”, Ann. Statist., 29:2 (2001), 328–371 | DOI | MR | Zbl
[24] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl
[25] I. Nourdin, G. Peccati, Normal approximations with Malliavin calculus. From Stein's method to universality, Cambridge Tracts in Math., 192, Cambridge Univ. Press, Cambridge, 2012, xiv+239 pp. | DOI | MR | Zbl
[26] D. Nualart, The Malliavin calculus and related topics, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1995, xii+266 pp. | DOI | MR | Zbl
[27] F. G. Tricomi, “Asymptotische Eigenschaften der unvollständigen Gammafunktion”, Math. Z., 53 (1950), 136–148 | DOI | MR | Zbl
[28] F. G. Viens, A. B. Vizcarra, “Supremum concentration inequality and modulus of continuity for sub-$n$th chaos processes”, J. Funct. Anal., 248:1 (2007), 1–26 | DOI | MR | Zbl
[29] WanSoo T. Rhee, “On the distribution of the norm for a Gaussian measure”, Ann. Inst. H. Poincaré Probab. Statist., 20:3 (1984), 277–286 | MR | Zbl
[30] WanSoo Rhee, M. Talagrand, “Bad rates of convergence for the central limit theorem in Hilbert space”, Ann. Probab., 12:3 (1984), 843–850 | DOI | MR | Zbl
[31] WanSoo Rhee, M. Talagrand, “Uniform convexity and the distribution of the norm for a Gaussian measure”, Probab. Theory Relat. Fields, 71:1 (1986), 59–67 | DOI | MR | Zbl
[32] A. W. Roberts, D. E. Varberg, Convex functions, Pure Appl. Math., 57, Academic Press, New York–London, 1973, xx+300 pp. | MR | Zbl
[33] N. V. Smorodina, “An asymptotic expansion of the distribution of a homogeneous functional of a strictly stable vector”, Theory Probab. Appl., 41:1 (1997), 91–115 | DOI | DOI | MR | Zbl