Adjoint $(1,1)$-classes on threefolds
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 823-830

Voir la notice de l'article provenant de la source Math-Net.Ru

We answer a question of Filip and Tosatti concerning a basepoint-free theorem for transcendental $(1,1)$-classes on compact Kähler threefolds.
Keywords: Kähler manifold, contraction theorem.
Mots-clés : MMP
@article{IM2_2021_85_4_a8,
     author = {A. H\"oring},
     title = {Adjoint $(1,1)$-classes on threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {823--830},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/}
}
TY  - JOUR
AU  - A. Höring
TI  - Adjoint $(1,1)$-classes on threefolds
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 823
EP  - 830
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/
LA  - en
ID  - IM2_2021_85_4_a8
ER  - 
%0 Journal Article
%A A. Höring
%T Adjoint $(1,1)$-classes on threefolds
%J Izvestiya. Mathematics 
%D 2021
%P 823-830
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/
%G en
%F IM2_2021_85_4_a8
A. Höring. Adjoint $(1,1)$-classes on threefolds. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 823-830. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/