Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_4_a8, author = {A. H\"oring}, title = {Adjoint $(1,1)$-classes on threefolds}, journal = {Izvestiya. Mathematics }, pages = {823--830}, publisher = {mathdoc}, volume = {85}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/} }
A. Höring. Adjoint $(1,1)$-classes on threefolds. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 823-830. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/
[1] S. Filip, V. Tosatti, “Smooth and rough positive currents”, Ann. Inst. Fourier (Grenoble), 68:7 (2018), 2981–2999 | DOI | MR | Zbl
[2] C. Birkar, P. Cascini, Ch. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl
[3] V. Tosatti, Yuguang Zhang, “Finite time collapsing of the Kähler–Ricci flow on threefolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18:1 (2018), 105–118 | DOI | MR | Zbl
[4] A. Höring, T. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264 | DOI | MR | Zbl
[5] F. Campana, A. Höring, T. Peternell, “Abundance for Kähler threefolds”, Ann. Sci. Éc. Norm. Supér. (4), 49:4 (2016), 971–1025 | DOI | MR | Zbl
[6] S. Druel, “A decomposition theorem for singular spaces with trivial canonical class of dimension at most five”, Invent. Math., 211:1 (2018), 245–296 | DOI | MR | Zbl
[7] A. Beauville, “Variétés Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom., 18:4 (1983), 755–782 | DOI | MR | Zbl
[8] E. Amerik, M. Verbitsky, Contraction centers in families of hyperkähler manifolds, 2019, arXiv: 1903.04884
[9] J. Kollár, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl
[10] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001, xiv+233 pp. | DOI | MR | Zbl
[11] J.-P. Demailly, M. Paun, “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2), 159:3 (2004), 1247–1274 | DOI | MR | Zbl
[12] J.-P. Demailly, Analytic methods in algebraic geometry, Surv. Mod. Math., 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, viii+231 pp. | MR | Zbl
[13] M. Paun, “Sur l'effectivité numérique des images inverses de fibrés en droites”, Math. Ann., 310:3 (1998), 411–421 | DOI | MR | Zbl
[14] T. C. Collins, V. Tosatti, “Kähler currents and null loci”, Invent. Math., 202:3 (2015), 1167–1198 | DOI | MR | Zbl
[15] J.-P. Demailly, “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom., 1:3 (1992), 361–409 | MR | Zbl
[16] S. Boucksom, “Divisorial {Z}ariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4), 37:1 (2004), 45–76 | DOI | MR | Zbl
[17] C. Araujo, “The cone of pseudo-effective divisors of log varieties after Batyrev”, Math. Z., 264:1 (2010), 179–193 | DOI | MR | Zbl
[18] A. Höring, T. Peternell, “Mori fibre spaces for Kähler threefolds”, J. Math. Sci. Univ. Tokyo, 22:1 (2015), 219–246 | MR | Zbl
[19] Sh. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl
[20] V. Ancona, “Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces”, Ann. Mat. Pura Appl. (4), 149 (1987), 153–164 | DOI | MR | Zbl
[21] A. Beauville, “Some remarks on Kähler manifolds with $c_{1}=0$”, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, 1–26 | MR | Zbl