Adjoint $(1,1)$-classes on threefolds
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 823-830.

Voir la notice de l'article provenant de la source Math-Net.Ru

We answer a question of Filip and Tosatti concerning a basepoint-free theorem for transcendental $(1,1)$-classes on compact Kähler threefolds.
Keywords: Kähler manifold, contraction theorem.
Mots-clés : MMP
@article{IM2_2021_85_4_a8,
     author = {A. H\"oring},
     title = {Adjoint $(1,1)$-classes on threefolds},
     journal = {Izvestiya. Mathematics },
     pages = {823--830},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/}
}
TY  - JOUR
AU  - A. Höring
TI  - Adjoint $(1,1)$-classes on threefolds
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 823
EP  - 830
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/
LA  - en
ID  - IM2_2021_85_4_a8
ER  - 
%0 Journal Article
%A A. Höring
%T Adjoint $(1,1)$-classes on threefolds
%J Izvestiya. Mathematics 
%D 2021
%P 823-830
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/
%G en
%F IM2_2021_85_4_a8
A. Höring. Adjoint $(1,1)$-classes on threefolds. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 823-830. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a8/

[1] S. Filip, V. Tosatti, “Smooth and rough positive currents”, Ann. Inst. Fourier (Grenoble), 68:7 (2018), 2981–2999 | DOI | MR | Zbl

[2] C. Birkar, P. Cascini, Ch. D. Hacon, J. McKernan, “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc., 23:2 (2010), 405–468 | DOI | MR | Zbl

[3] V. Tosatti, Yuguang Zhang, “Finite time collapsing of the Kähler–Ricci flow on threefolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18:1 (2018), 105–118 | DOI | MR | Zbl

[4] A. Höring, T. Peternell, “Minimal models for Kähler threefolds”, Invent. Math., 203:1 (2016), 217–264 | DOI | MR | Zbl

[5] F. Campana, A. Höring, T. Peternell, “Abundance for Kähler threefolds”, Ann. Sci. Éc. Norm. Supér. (4), 49:4 (2016), 971–1025 | DOI | MR | Zbl

[6] S. Druel, “A decomposition theorem for singular spaces with trivial canonical class of dimension at most five”, Invent. Math., 211:1 (2018), 245–296 | DOI | MR | Zbl

[7] A. Beauville, “Variétés Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom., 18:4 (1983), 755–782 | DOI | MR | Zbl

[8] E. Amerik, M. Verbitsky, Contraction centers in families of hyperkähler manifolds, 2019, arXiv: 1903.04884

[9] J. Kollár, Sh. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti, Cambridge Tracts in Math., 134, Cambridge Univ. Press, Cambridge, 1998, viii+254 pp. | DOI | MR | Zbl

[10] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001, xiv+233 pp. | DOI | MR | Zbl

[11] J.-P. Demailly, M. Paun, “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2), 159:3 (2004), 1247–1274 | DOI | MR | Zbl

[12] J.-P. Demailly, Analytic methods in algebraic geometry, Surv. Mod. Math., 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, viii+231 pp. | MR | Zbl

[13] M. Paun, “Sur l'effectivité numérique des images inverses de fibrés en droites”, Math. Ann., 310:3 (1998), 411–421 | DOI | MR | Zbl

[14] T. C. Collins, V. Tosatti, “Kähler currents and null loci”, Invent. Math., 202:3 (2015), 1167–1198 | DOI | MR | Zbl

[15] J.-P. Demailly, “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom., 1:3 (1992), 361–409 | MR | Zbl

[16] S. Boucksom, “Divisorial {Z}ariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4), 37:1 (2004), 45–76 | DOI | MR | Zbl

[17] C. Araujo, “The cone of pseudo-effective divisors of log varieties after Batyrev”, Math. Z., 264:1 (2010), 179–193 | DOI | MR | Zbl

[18] A. Höring, T. Peternell, “Mori fibre spaces for Kähler threefolds”, J. Math. Sci. Univ. Tokyo, 22:1 (2015), 219–246 | MR | Zbl

[19] Sh. Mori, “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[20] V. Ancona, “Vanishing and nonvanishing theorems for numerically effective line bundles on complex spaces”, Ann. Mat. Pura Appl. (4), 149 (1987), 153–164 | DOI | MR | Zbl

[21] A. Beauville, “Some remarks on Kähler manifolds with $c_{1}=0$”, Classification of algebraic and analytic manifolds (Katata, 1982), Progr. Math., 39, Birkhäuser Boston, Boston, MA, 1983, 1–26 | MR | Zbl