A~basis for a~partially commutative metabelian group
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 813-822

Voir la notice de l'article provenant de la source Math-Net.Ru

We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.
Keywords: metabelian group, partially commutative group, basis, canonical form.
@article{IM2_2021_85_4_a7,
     author = {E. I. Timoshenko},
     title = {A~basis for a~partially commutative metabelian group},
     journal = {Izvestiya. Mathematics },
     pages = {813--822},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - A~basis for a~partially commutative metabelian group
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 813
EP  - 822
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/
LA  - en
ID  - IM2_2021_85_4_a7
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T A~basis for a~partially commutative metabelian group
%J Izvestiya. Mathematics 
%D 2021
%P 813-822
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/
%G en
%F IM2_2021_85_4_a7
E. I. Timoshenko. A~basis for a~partially commutative metabelian group. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 813-822. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/