A~basis for a~partially commutative metabelian group
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 813-822.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find explicitly a basis for the derived group of a partially commutative metabelian group and describe a canonical representation for the elements of the group.
Keywords: metabelian group, partially commutative group, basis, canonical form.
@article{IM2_2021_85_4_a7,
     author = {E. I. Timoshenko},
     title = {A~basis for a~partially commutative metabelian group},
     journal = {Izvestiya. Mathematics },
     pages = {813--822},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - A~basis for a~partially commutative metabelian group
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 813
EP  - 822
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/
LA  - en
ID  - IM2_2021_85_4_a7
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T A~basis for a~partially commutative metabelian group
%J Izvestiya. Mathematics 
%D 2021
%P 813-822
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/
%G en
%F IM2_2021_85_4_a7
E. I. Timoshenko. A~basis for a~partially commutative metabelian group. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 813-822. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a7/

[1] A. J. Duncan, V. N. Remeslennikov, A. V. Treier, “A survey of free partially commutative groups”, XIII international scientific and technical conference “Applied mechanics and systems dynamics” (Omsk, 2019), J. Phys. Conf. Ser., 1441, 2020, 012136, 11 pp. | DOI

[2] E. I. Timoshenko, Endomorfizmy i universalnye teorii razreshimykh grupp, Novosibirskii gos. tekh. un-t, Novosibirsk, 2011, 327 pp.

[3] E. I. Timoshenko, “A Mal'tsev basis for a partially commutative nilpotent metabelian group”, Algebra and Logic, 50:5 (2011), 439–446 | DOI | MR | Zbl

[4] E. S. Esyp, I. V. Kazatchkov, V. N. Remeslennikov, “Divisibility theory and complexity of algorithms for free partially commutative groups”, Groups, languages, algorithms, Contemp. Math., 378, Amer. Math. Soc., Providence, RI, 2005, 319–348 | DOI | MR | Zbl

[5] A. A. Mischenko, A. V. Treier, “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $\mathbb Q$-grupp”, Sib. elektron. matem. izv., 4 (2007), 460–481 | MR | Zbl

[6] Ch. K. Gupta, E. I. Timoshenko, “Properties and universal theories for partially commutative nilpotent metabelian groups”, Algebra and Logic, 51:4 (2012), 285–305 | DOI | MR | Zbl

[7] Ch. K. Gupta, E. I. Timoshenko, “Universal theories for partially commutative metabelian groups”, Algebra and Logic, 50:1 (2011), 1–16 | DOI | MR | Zbl

[8] E. N. Poroshenko, E. I. Timoshenko, “Universal equivalence of partially commutative metabelian Lie algebras”, J. Algebra, 384 (2013), 143–168 | DOI | MR | Zbl

[9] E. N. Poroshenko, “Bases for partially commutative Lie algebras”, Algebra and Logic, 50:5 (2011), 405–417 | DOI | MR | Zbl

[10] G. Duchamp, D. Krob, “The free partially commutative Lie algebra: bases and ranks”, Adv. Math., 95:1 (1992), 92–126 | DOI | MR | Zbl

[11] D. J. S. Robinson, A course in the theory of groups, Grad. Texts in Math., 80, Springer-Verlag, New York–Berlin, 1982, xvii+481 pp. | MR | Zbl

[12] Ch. K. Gupta, E. I. Timoshenko, “Partially commutative metabelian groups: centralizers and elementary equivalence”, Algebra and Logic, 48:3 (2009), 173–192 | DOI | MR | Zbl

[13] M. I. Kargapolov, Ju. I. Merzljakov, Fundamentals of the theory of groups, Grad. Texts in Math., 62, Springer-Verlag, New York–Berlin, 1979, xvii+203 pp. | MR | MR | Zbl | Zbl

[14] V. A. Romankov, “Diofantova kriptografiya na beskonechnykh gruppakh”, PDM, 2012, no. 2(16), 15–42 | Zbl