Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_4_a3, author = {M. E. Kazarian and S. K. Lando and S. M. Natanzon}, title = {On framed simple purely real {Hurwitz} numbers}, journal = {Izvestiya. Mathematics }, pages = {681--704}, publisher = {mathdoc}, volume = {85}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a3/} }
M. E. Kazarian; S. K. Lando; S. M. Natanzon. On framed simple purely real Hurwitz numbers. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 681-704. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a3/
[1] S. M. Natanzon, “Finite groups of homeomorphisms of surfaces and real forms of complex algebraic curves”, Trans. Moscow Math. Soc., 1989, 1–51 | MR | Zbl
[2] S. M. Gusein-Zade, S. M. Natanzon, “Klein foams as families of real forms of Riemann surfaces”, Adv. Theor. Math. Phys., 21:1 (2017), 231–241 | DOI | MR | Zbl
[3] I. P. Goulden, D. M. Jackson, “Transitive factorisations into transpositions and holomorphic mappings on the sphere”, Proc. Amer. Math. Soc., 125:1 (1997), 51–60 | DOI | MR | Zbl
[4] S. M. Natanzon, “Simple Hurwitz numbers of a disk”, Funct. Anal. Appl., 44:1 (2010), 36–47 | DOI | DOI | MR | Zbl
[5] I. Itenberg, D. Zvonkine, “Hurwitz numbers for real polynomials”, Comment. Math. Helv., 93:3 (2018), 441–474 ; arXiv: 1609.05219 | DOI | MR | Zbl
[6] V. Arnold, “Topological classification of real trigonometric polynomials and cyclic serpents polyhedron”, The Arnold–Gelfand mathematical seminars, Birkhäuser Boston, Boston, MA, 1997, 101–106 | MR | Zbl
[7] B. Z. Shapiro, “On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values”, Math. Notes, 62:4 (1997), 529–534 | DOI | DOI | MR | Zbl
[8] B. Z. Shapiro, A. D. Vainshtein, “Counting real rational functions with all real critical values”, Mosc. Math. J., 3:2 (2003), 647–659 | DOI | MR | Zbl
[9] S. Natanzon, B. Shapiro, A. Vainshtein, “Topological classification of generic real rational functions”, J. Knot Theory Ramifications, 11:7 (2002), 1063–1075 | DOI | MR | Zbl
[10] A. F. Costa, S. Natanzon, B. Shapiro, “Topological classification of generic real meromorphic functions from compact surfaces”, Ann. Acad. Sci. Fenn. Math., 43:1 (2018), 349–363 ; arXiv: 1609.05755 | DOI | MR | Zbl
[11] S. Barannikov, “On the space of real polynomials without multiple critical values”, Funct. Anal. Appl., 26:2 (1992), 84–90 | DOI | MR | Zbl
[12] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The moduli spaces of curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 149–163 | DOI | MR | Zbl
[13] A. Alexeevski, S. Natanzon, “Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves”, Selecta Math. (N.S.), 12:3-4 (2006), 307–377 ; arXiv: math/0202164 | DOI | MR | Zbl
[14] A. V. Alekseevskii, S. M. Natanzon, “The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces”, Izv. Math., 72:4 (2008), 627–646 | DOI | DOI | MR | Zbl
[15] A. V. Alexeevski, S. M. Natanzon, “Hurwitz numbers for regular coverings of surfaces by seamed surfaces and Cardy–Frobenius algebras of finite groups”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Adv. Math. Sci., 61, Amer. Math. Soc., Providence, RI, 2008, 1–25 | DOI | MR | Zbl
[16] A. Mironov, A. Morozov, S. Natanzon, “Cardy–Frobenius extension of the algebra of cut-and-join operators”, J. Geom. Phys., 73 (2013), 243–251 | DOI | MR | Zbl
[17] A. Mironov, A. Morozov, S. Natanzon, “A Hurwitz theory avatar of open–closed strings”, Eur. Phys. J. C Part. Fields, 73:2 (2013), 2324, 10 pp. | DOI
[18] A. Mironov, A. Morozov, S. Natanzon, “Infinite-dimensional topological field theories from Hurwitz numbers”, J. Knot Theory Ramifications, 23:6 (2014), 1450033, 16 pp. | DOI | MR | Zbl