Symmetries of a two-dimensional continued fraction
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 666-680

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the symmetry group of a multidimensional continued fraction. As a multidimensional generalization of continued fractions we consider Klein polyhedra. We distinguish two types of symmetries: Dirichlet symmetries, which correspond to the multiplication by units of the respective extension of $\mathbb{Q}$, and so-called palindromic symmetries. The main result is a criterion for a two-dimensional continued fraction to have palindromic symmetries, which is analogous to the well-known criterion for the continued fraction of a quadratic irrationality to have a symmetric period.
Keywords: multidimensional continued fractions, Klein polyhedra, Dirichlet's unit theorem.
@article{IM2_2021_85_4_a2,
     author = {O. N. German and I. A. Tlyustangelov},
     title = {Symmetries of a two-dimensional continued fraction},
     journal = {Izvestiya. Mathematics },
     pages = {666--680},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/}
}
TY  - JOUR
AU  - O. N. German
AU  - I. A. Tlyustangelov
TI  - Symmetries of a two-dimensional continued fraction
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 666
EP  - 680
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/
LA  - en
ID  - IM2_2021_85_4_a2
ER  - 
%0 Journal Article
%A O. N. German
%A I. A. Tlyustangelov
%T Symmetries of a two-dimensional continued fraction
%J Izvestiya. Mathematics 
%D 2021
%P 666-680
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/
%G en
%F IM2_2021_85_4_a2
O. N. German; I. A. Tlyustangelov. Symmetries of a two-dimensional continued fraction. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 666-680. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/