Symmetries of a two-dimensional continued fraction
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 666-680.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the symmetry group of a multidimensional continued fraction. As a multidimensional generalization of continued fractions we consider Klein polyhedra. We distinguish two types of symmetries: Dirichlet symmetries, which correspond to the multiplication by units of the respective extension of $\mathbb{Q}$, and so-called palindromic symmetries. The main result is a criterion for a two-dimensional continued fraction to have palindromic symmetries, which is analogous to the well-known criterion for the continued fraction of a quadratic irrationality to have a symmetric period.
Keywords: multidimensional continued fractions, Klein polyhedra, Dirichlet's unit theorem.
@article{IM2_2021_85_4_a2,
     author = {O. N. German and I. A. Tlyustangelov},
     title = {Symmetries of a two-dimensional continued fraction},
     journal = {Izvestiya. Mathematics },
     pages = {666--680},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/}
}
TY  - JOUR
AU  - O. N. German
AU  - I. A. Tlyustangelov
TI  - Symmetries of a two-dimensional continued fraction
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 666
EP  - 680
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/
LA  - en
ID  - IM2_2021_85_4_a2
ER  - 
%0 Journal Article
%A O. N. German
%A I. A. Tlyustangelov
%T Symmetries of a two-dimensional continued fraction
%J Izvestiya. Mathematics 
%D 2021
%P 666-680
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/
%G en
%F IM2_2021_85_4_a2
O. N. German; I. A. Tlyustangelov. Symmetries of a two-dimensional continued fraction. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 666-680. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a2/

[1] É. Galois, “Analyse algébrique. Demonstration d'un théorème sur les fractions continues périodiques”, Ann. Math. Pures Appl. [Ann. Gergonne], 19 (1828/29), 294–301 | MR

[2] A.-M. Legendre, Théorie des nombres, v. 1, 2, 3 ed., Firmin Didot Frères, Libraires, Paris, 1830, xxiv+396 pp., xv+463 pp. | Zbl

[3] M. Kraitchik, Théorie des nombres, v. 2, Analyse indéterminée du second degré et factorisation, Gauthier-Villars, Paris, 1926, iv+252 pp. | Zbl

[4] O. Perron, Die Lehre von den Kettenbrüchen, v. 1, Elementare Kettenbrüche, 3te Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954, vi+194 pp. | MR | Zbl

[5] O. N. German, I. A. Tlyustangelov, “Palindromes and periodic continued fractions”, Mosc. J. Comb. Number Theory, 6:2-3 (2016), 233–252 | MR | Zbl

[6] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl

[7] O. Karpenkov, Geometry of continued fractions, Algorithms Comput. Math., 26, Springer, Heidelberg, 2013, xviii+405 pp. | DOI | MR | Zbl

[8] J.-O. Moussafir, “Convex hulls of integral points”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. V, Zap. nauch. sem. POMI, 266, POMI, SPb., 2000, 188–217 ; J. Math. Sci. (N.Y.), 113:5 (2003), 647–665 | MR | Zbl | DOI

[9] O. N. German, “Sails and norm minima of lattices”, Sb. Math., 196:3 (2005), 337–365 | DOI | DOI | MR | Zbl

[10] O. N. German, “Klein polyhedra and lattices with positive norm minima”, J. Théor. Nombres Bordeaux, 19:1 (2007), 175–190 | DOI | MR | Zbl

[11] O. N. German, E. L. Lakshtanov, “On a multidimensional generalization of Lagrange's theorem on continued fractions”, Izv. Math., 72:1 (2008), 47–61 | DOI | DOI | MR | Zbl

[12] A. V. Ustinov, “Three-dimensional continued fractions and Kloosterman sums”, Russian Math. Surveys, 70:3 (2015), 483–556 | DOI | DOI | MR | Zbl

[13] O. Karpenkov, A. Ustinov, “Geometry and combinatoric of Minkowski–Voronoi 3-dimensional continued fractions”, J. Number Theory, 176 (2017), 375–419 | DOI | MR | Zbl

[14] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London, 1966, x+435 pp. | MR | MR | Zbl | Zbl

[15] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992, xiv+291 pp. | DOI | MR | Zbl