The derivative of the Minkowski function
Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 621-665.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove new results on the derivative of the Minkowski question mark function.
Keywords: Minkowski function, continued fraction
Mots-clés : continuant.
@article{IM2_2021_85_4_a1,
     author = {D. R. Gaifulin and I. D. Kan},
     title = {The derivative of the {Minkowski} function},
     journal = {Izvestiya. Mathematics },
     pages = {621--665},
     publisher = {mathdoc},
     volume = {85},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a1/}
}
TY  - JOUR
AU  - D. R. Gaifulin
AU  - I. D. Kan
TI  - The derivative of the Minkowski function
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 621
EP  - 665
VL  - 85
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a1/
LA  - en
ID  - IM2_2021_85_4_a1
ER  - 
%0 Journal Article
%A D. R. Gaifulin
%A I. D. Kan
%T The derivative of the Minkowski function
%J Izvestiya. Mathematics 
%D 2021
%P 621-665
%V 85
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a1/
%G en
%F IM2_2021_85_4_a1
D. R. Gaifulin; I. D. Kan. The derivative of the Minkowski function. Izvestiya. Mathematics , Tome 85 (2021) no. 4, pp. 621-665. http://geodesic.mathdoc.fr/item/IM2_2021_85_4_a1/

[1] H. Minkowski, Gesammelte Abhandlungen, v. 2, B. G. Teubner, Leipzig–Berlin, 1911, iv+466 pp. | Zbl

[2] R. Salem, “On some singular monotonic functions which are strictly increasing”, Trans. Amer. Math. Soc., 53:3 (1943), 427–439 | DOI | MR | Zbl

[3] J. R. Kinney, “Note on a singular function of Minkowski”, Proc. Amer. Math. Soc., 11:5 (1960), 788–794 | DOI | MR | Zbl

[4] P. Viader, J. Paradis, L. Bibiloni, “A new light on Minkowski's $?(x)$ function”, J. Number Theory, 73:2 (1998), 212–227 | DOI | MR | Zbl

[5] J. Paradis, P. Viader, L. Bibiloni, “The derivative of Minkowski's $?(x)$ function”, J. Math. Anal. Appl., 253:1 (2001), 107–125 | DOI | MR | Zbl

[6] A. A. Dushistova, N. G. Moshchevitin, “On the derivative of the Minkowski question mark function $?(x)$”, J. Math. Sci. (N.Y.), 182:4 (2012), 463–471 | DOI | MR | Zbl

[7] A. A. Dushistova, I. D. Kan, N. G. Moshchevitin, “Differentiability of the Minkowski question mark function”, J. Math. Anal. Appl., 401:2 (2013), 774–794 | DOI | MR | Zbl

[8] I. D. Kan, “Differentiability of the Minkowski function $?(x)$. II”, Izv. Math., 83:5 (2019), 957–989 | DOI | DOI | MR | Zbl

[9] I. D. Kan, “Differentiability of the Minkowski $?(x)$-function. III”, Sb. Math., 210:8 (2019), 1148–1178 | DOI | DOI | MR | Zbl

[10] A. Ya. Khinchin, Continued fractions, The Univ. of Chicago Press, Chicago, IL–London, 1964, xi+95 pp. | MR | MR | Zbl | Zbl

[11] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete mathematics. A foundation for computer science, 2nd ed., Addison-Wesley Publ. Co., Reading, MA, 1994, xiv+657 pp. | MR | Zbl

[12] I. D. Kan, “Methods for estimating continuants”, J. Math. Sci. (N.Y.), 182:4 (2012), 508–517 | DOI | MR | Zbl

[13] D. R. Gayfulin, “Derivatives of two functions belonging to the Denjoy–Tichy–Uits family”, St. Petersburg Math. J., 27:1 (2016), 51–85 | DOI | MR | Zbl

[14] T. S. Motzkin, E. G. Straus, “Some combinatorial extremum problems”, Proc. Amer. Math. Soc., 7:6 (1956), 1014–1021 | DOI | MR | Zbl