Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a9, author = {P. V. Paramonov}, title = {Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations}, journal = {Izvestiya. Mathematics }, pages = {483--505}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/} }
TY - JOUR AU - P. V. Paramonov TI - Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations JO - Izvestiya. Mathematics PY - 2021 SP - 483 EP - 505 VL - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/ LA - en ID - IM2_2021_85_3_a9 ER -
%0 Journal Article %A P. V. Paramonov %T Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations %J Izvestiya. Mathematics %D 2021 %P 483-505 %V 85 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/ %G en %F IM2_2021_85_3_a9
P. V. Paramonov. Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 483-505. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/
[1] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl
[2] P. V. Paramonov, X. Tolsa, “On $C^1$-approximability of functions by solutions of second order elliptic equations on plane compact sets and $C$-analytic capacity”, Anal. Math. Phys., 9:3 (2019), 1133–1161 | DOI | MR | Zbl
[3] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl
[4] A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114 | MR | Zbl
[5] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl
[6] P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870 | DOI | DOI | MR | Zbl
[7] P. V. Paramonov, “On harmonic approximation in the $C^1$-norm”, Math. USSR-Sb., 71:1 (1992), 183–207 | DOI | MR | Zbl
[8] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl
[9] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | DOI | MR | Zbl
[10] R. Harvey, J. C. Polking, “A Laurent expansion for solutions to elliptic equations”, Trans. Amer. Math. Soc., 180 (1973), 407–413 | DOI | MR | Zbl
[11] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl
[12] M. Ya. Mazalov, P. V. Paramonov, “Criteria for $C^m$-approximability by bianalytic functions on planar compact sets”, Sb. Math., 206:2 (2015), 242–281 | DOI | DOI | MR | Zbl
[13] P. Mattila, P. V. Paramonov, “On geometric properties of harmonic $\operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–491 | DOI | MR | Zbl
[14] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl
[15] V. Ya. Èiderman, “Estimates for potentials and $\delta$-subharmonic functions outside exceptional sets”, Izv. Math., 61:6 (1997), 1293–1329 | DOI | DOI | MR | Zbl
[16] V. Eiderman, F. Nazarov, A. Volberg, “Vector-valued Riesz potentials: Cartan-type estimates and related capacities”, Proc. Lond. Math. Soc. (3), 101:3 (2010), 727–758 | DOI | MR | Zbl
[17] A. G. Vitushkin, “Primer mnozhestv polozhitelnoi dliny, no nulevoi analiticheskoi emkosti”, Dokl. AN SSSR, 127:2 (1959), 246–249 | MR | Zbl
[18] X. Tolsa, “Painlevé's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149 | DOI | MR | Zbl
[19] X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126:3 (2004), 523–567 | DOI | MR | Zbl
[20] A. Volberg, Calderón–Zygmund capacities and operators on nonhomogeneous spaces, CBMS Regional Conf. Ser. in Math., 100, Amer. Math. Soc., Providence, RI, 2003, iv+167 pp. | DOI | MR | Zbl
[21] A. Ruiz de Villa, X. Tolsa, “Characterization and semiadditivity of the $\mathcal C^1$-harmonic capacity”, Trans. Amer. Math. Soc., 362:7 (2010), 3641–3675 | DOI | MR | Zbl
[22] G. David, J. L. Journé, S. Semmes, “Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation”, Rev. Mat. Iberoamericana, 1:4 (1985), 1–56 | DOI | MR | Zbl
[23] F. Nazarov, S. Treil, A. Volberg, “The {$Tb$}-theorem on non-homogeneous spaces”, Acta Math., 190:2 (2003), 151–239 | DOI | MR | Zbl
[24] F. Nazarov, S. Treil, A. Volberg, “Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces”, Int. Math. Res. Not. IMRN, 1998:9 (1998), 463–487 | DOI | MR | Zbl
[25] X. Tolsa, Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory, Progr. Math., 307, Birkhäuser/Springer, Cham, 2014, xiv+396 pp. | DOI | MR | Zbl