Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 483-505

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain capacitive criteria for the approximability of individual functions by solutions of second-order homogeneous elliptic equations with constant complex coefficients in the norm of a Whitney-type $C^1$-space on a compact set in $\mathbb{R}^N$, $N \geqslant 3$. The case $N=2$ was studied in a recent paper by the author and Tolsa. For $C^1$-approximations by harmonic functions (with any $N$), weaker criteria were earlier found by the author. We establish some metric properties of the capacities considered.
Keywords: $C^1$-approximation, second-order elliptic equation, Vitushkin's localization operator, $\mathcal{L}C^1$-capacity, semi-additivity problem.
Mots-clés : $L$-oscillation, $p$-dimensional Hausdorff content
@article{IM2_2021_85_3_a9,
     author = {P. V. Paramonov},
     title = {Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {483--505},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/}
}
TY  - JOUR
AU  - P. V. Paramonov
TI  - Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 483
EP  - 505
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/
LA  - en
ID  - IM2_2021_85_3_a9
ER  - 
%0 Journal Article
%A P. V. Paramonov
%T Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations
%J Izvestiya. Mathematics 
%D 2021
%P 483-505
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/
%G en
%F IM2_2021_85_3_a9
P. V. Paramonov. Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 483-505. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/