Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a9, author = {P. V. Paramonov}, title = {Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations}, journal = {Izvestiya. Mathematics }, pages = {483--505}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/} }
TY - JOUR AU - P. V. Paramonov TI - Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations JO - Izvestiya. Mathematics PY - 2021 SP - 483 EP - 505 VL - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/ LA - en ID - IM2_2021_85_3_a9 ER -
%0 Journal Article %A P. V. Paramonov %T Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations %J Izvestiya. Mathematics %D 2021 %P 483-505 %V 85 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/ %G en %F IM2_2021_85_3_a9
P. V. Paramonov. Criteria for $C^1$-approximability of functions on compact sets in~${\mathbb{R}}^N$, $N\geqslant 3$, by solutions of~second-order homogeneous elliptic equations. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 483-505. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a9/