Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2021_85_3_a8, author = {J. E. Mateu and M. G. Mora and L. Rondi and L. Scardia and J. Verdera}, title = {Explicit minimizers of some non-local anisotropic energies: a~short proof}, journal = {Izvestiya. Mathematics }, pages = {468--482}, publisher = {mathdoc}, volume = {85}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/} }
TY - JOUR AU - J. E. Mateu AU - M. G. Mora AU - L. Rondi AU - L. Scardia AU - J. Verdera TI - Explicit minimizers of some non-local anisotropic energies: a~short proof JO - Izvestiya. Mathematics PY - 2021 SP - 468 EP - 482 VL - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/ LA - en ID - IM2_2021_85_3_a8 ER -
%0 Journal Article %A J. E. Mateu %A M. G. Mora %A L. Rondi %A L. Scardia %A J. Verdera %T Explicit minimizers of some non-local anisotropic energies: a~short proof %J Izvestiya. Mathematics %D 2021 %P 468-482 %V 85 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/ %G en %F IM2_2021_85_3_a8
J. E. Mateu; M. G. Mora; L. Rondi; L. Scardia; J. Verdera. Explicit minimizers of some non-local anisotropic energies: a~short proof. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 468-482. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/
[1] J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The ellipse law: Kirchhoff meets dislocations”, Comm. Math. Phys., 373:2 (2020), 507–524 | DOI | MR | Zbl
[2] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem., 3, 1935, 118 pp. | Zbl
[3] M. G. Mora, L. Rondi, L. Scardia, “The equilibrium measure for a nonlocal dislocation energy”, Comm. Pure Appl. Math., 72:1 (2019), 136–158 | DOI | MR | Zbl
[4] J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The equilibrium measure for an anisotropic nonlocal energy”, Calc. Var. Partial Differential Equations (to appear) | DOI
[5] J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “A maximum-principle approach to the minimisation of a nonlocal dislocation energy”, Math. Eng., 2:2 (2020), 253–263 | DOI | MR
[6] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl
[7] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl
[8] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl
[9] T. Hmidi, J. Mateu, J. Verdera, “On rotating doubly connected vortices”, J. Differential Equations, 258:4 (2015), 1395–1429 | DOI | MR | Zbl
[10] R. J. Duffin, “The maximum principle and biharmonic functions”, J. Math. Anal. Appl., 3:3 (1961), 399–405 | DOI | MR | Zbl
[11] J. Verdera, “$L^2$-boundedness of the Cauchy integral and Menger curvature”, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2001, 139–158 | DOI | MR | Zbl
[12] S. Hofmann, M. Mitrea, M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains”, Int. Math. Res. Not. IMRN, 2010:14 (2010), 2567–2865 | DOI | MR | Zbl
[13] X. Tolsa, “Jump formulas for singular integrals and layer potentials on rectifiable sets”, Proc. Amer. Math. Soc., 148:11 (2020), 4755–4767 | DOI | MR | Zbl