Explicit minimizers of some non-local anisotropic energies: a~short proof
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 468-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider non-local energies defined on probability measures in the plane, given by a convolution interaction term plus a quadratic confinement. The interaction kernel is $-\log|z|+\alpha x^2/|z|^2$, $z=x+iy$, with $-1\alpha1$. This kernel is anisotropic except for the Coulomb case $\alpha=0$. We present a short compact proof of the known surprising fact that the unique minimizer of the energy is the normalized characteristic function of the domain enclosed by an ellipse with horizontal semi-axis $\sqrt{1-\alpha}$ and vertical semi-axis $\sqrt{1+\alpha}$. Letting $\alpha \to 1^-$, we find that the semicircle law on the vertical axis is the unique minimizer of the corresponding energy, a result related to interacting dislocations, and previously obtained by some of the authors. We devote the first sections of this paper to presenting some well-known background material in the simplest way possible, so that readers unfamiliar with the subject find the proofs accessible.
Keywords: non-local interaction, potential theory, maximum principle
Mots-clés : Plemelj formula.
@article{IM2_2021_85_3_a8,
     author = {J. E. Mateu and M. G. Mora and L. Rondi and L. Scardia and J. Verdera},
     title = {Explicit minimizers of  some non-local anisotropic energies: a~short proof},
     journal = {Izvestiya. Mathematics },
     pages = {468--482},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/}
}
TY  - JOUR
AU  - J. E. Mateu
AU  - M. G. Mora
AU  - L. Rondi
AU  - L. Scardia
AU  - J. Verdera
TI  - Explicit minimizers of  some non-local anisotropic energies: a~short proof
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 468
EP  - 482
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/
LA  - en
ID  - IM2_2021_85_3_a8
ER  - 
%0 Journal Article
%A J. E. Mateu
%A M. G. Mora
%A L. Rondi
%A L. Scardia
%A J. Verdera
%T Explicit minimizers of  some non-local anisotropic energies: a~short proof
%J Izvestiya. Mathematics 
%D 2021
%P 468-482
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/
%G en
%F IM2_2021_85_3_a8
J. E. Mateu; M. G. Mora; L. Rondi; L. Scardia; J. Verdera. Explicit minimizers of  some non-local anisotropic energies: a~short proof. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 468-482. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a8/

[1] J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The ellipse law: Kirchhoff meets dislocations”, Comm. Math. Phys., 373:2 (2020), 507–524 | DOI | MR | Zbl

[2] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem., 3, 1935, 118 pp. | Zbl

[3] M. G. Mora, L. Rondi, L. Scardia, “The equilibrium measure for a nonlocal dislocation energy”, Comm. Pure Appl. Math., 72:1 (2019), 136–158 | DOI | MR | Zbl

[4] J. A. Carrillo, J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “The equilibrium measure for an anisotropic nonlocal energy”, Calc. Var. Partial Differential Equations (to appear) | DOI

[5] J. Mateu, M. G. Mora, L. Rondi, L. Scardia, J. Verdera, “A maximum-principle approach to the minimisation of a nonlocal dislocation energy”, Math. Eng., 2:2 (2020), 253–263 | DOI | MR

[6] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[7] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl

[8] N. S. Landkof, Foundations of modern potential theory, Grundlehren Math. Wiss., 180, Springer-Verlag, New York–Heidelberg, 1972, x+424 pp. | MR | MR | Zbl | Zbl

[9] T. Hmidi, J. Mateu, J. Verdera, “On rotating doubly connected vortices”, J. Differential Equations, 258:4 (2015), 1395–1429 | DOI | MR | Zbl

[10] R. J. Duffin, “The maximum principle and biharmonic functions”, J. Math. Anal. Appl., 3:3 (1961), 399–405 | DOI | MR | Zbl

[11] J. Verdera, “$L^2$-boundedness of the Cauchy integral and Menger curvature”, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000), Contemp. Math., 277, Amer. Math. Soc., Providence, RI, 2001, 139–158 | DOI | MR | Zbl

[12] S. Hofmann, M. Mitrea, M. Taylor, “Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains”, Int. Math. Res. Not. IMRN, 2010:14 (2010), 2567–2865 | DOI | MR | Zbl

[13] X. Tolsa, “Jump formulas for singular integrals and layer potentials on rectifiable sets”, Proc. Amer. Math. Soc., 148:11 (2020), 4755–4767 | DOI | MR | Zbl