Uniform approximation of functions
Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 421-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the uniform approximability of functions by solutions of second-order homogeneous strongly elliptic equations with constant complex coefficients on compact sets in $\mathbb{R}^2$ (the particular case of harmonic approximations is not distinguished). The criterion is stated in terms of the unique (scalar) Harvey–Polking capacity related to the leading coefficient of a Laurent-type expansion (this capacity is trivial in the well-studied case of non-strongly elliptic equations). The proof uses an improvement of Vitushkin's scheme, special geometric constructions, and methods of the theory of singular integrals. In view of the inhomogeneity of the fundamental solutions of strongly elliptic operators on $\mathbb{R}^2$, the problem considered is technically more difficult than the analogous problem for $\mathbb{R}^d$, $d>2$.
Keywords: uniform approximation, Vitushkin's scheme, capacities, homogeneous elliptic equations, Carleson measures.
@article{IM2_2021_85_3_a6,
     author = {M. Ya. Mazalov},
     title = {Uniform approximation of functions},
     journal = {Izvestiya. Mathematics },
     pages = {421--456},
     publisher = {mathdoc},
     volume = {85},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a6/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Uniform approximation of functions
JO  - Izvestiya. Mathematics 
PY  - 2021
SP  - 421
EP  - 456
VL  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a6/
LA  - en
ID  - IM2_2021_85_3_a6
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Uniform approximation of functions
%J Izvestiya. Mathematics 
%D 2021
%P 421-456
%V 85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a6/
%G en
%F IM2_2021_85_3_a6
M. Ya. Mazalov. Uniform approximation of functions. Izvestiya. Mathematics , Tome 85 (2021) no. 3, pp. 421-456. http://geodesic.mathdoc.fr/item/IM2_2021_85_3_a6/

[1] L. Hörmander, The analysis of linear partial differential operators, v. I, Grundlehren Math. Wiss., 256, Distribution theory and Fourier analysis, Springer-Verlag, Berlin, 1983, ix+391 pp. | DOI | MR | MR | Zbl | Zbl

[2] P. V. Paramonov, K. Yu. Fedorovskiy, “Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations”, Sb. Math., 190:2 (1999), 285–307 | DOI | DOI | MR | Zbl

[3] M. Ya. Mazalov, “A criterion for uniform approximability on arbitrary compact sets for solutions of elliptic equations”, Sb. Math., 199:1-2 (2008), 13–44 | DOI | DOI | MR | Zbl

[4] R. Harvey, J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195 | DOI | MR | Zbl

[5] A. G. Vitushkin, “The analytic capacity of sets in problems of approximation theory”, Russian Math. Surveys, 22:6 (1967), 139–200 | DOI | MR | Zbl

[6] M. Ya. Mazalov, P. V. Paramonov, K. Yu. Fedorovskiy, “Conditions for $C^m$-approximability of functions by solutions of elliptic equations”, Russian Math. Surveys, 67:6 (2012), 1023–1068 | DOI | DOI | MR | Zbl

[7] P. V. Paramonov, “Criteria for the individual $C^m$-approximability of functions on compact subsets of $\mathbb R^N$ by solutions of second-order homogeneous elliptic equations”, Sb. Math., 209:6 (2018), 857–870 | DOI | DOI | MR | Zbl

[8] P. V. Paramonov, “New criteria for uniform approximability by harmonic functions on compact sets in $\mathbb R^2$”, Proc. Steklov Inst. Math., 298 (2017), 201–211 | DOI | DOI | MR | Zbl

[9] M. Ya. Mazalov, “Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$”, Proc. Steklov Inst. Math., 279 (2012), 110–154 | DOI | MR | Zbl

[10] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, 13, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1967, v+151 pp. | MR | MR | Zbl | Zbl

[11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | MR | Zbl | Zbl

[12] P. V. Paramonov, “Some new criteria for uniform approximability of functions by rational fractions”, Sb. Math., 186:9 (1995), 1325–1340 | DOI | MR | Zbl

[13] J. Verdera, M. S. Mel'nikov, P. V. Paramonov, “$C^1$-approximation and extension of subharmonic functions”, Sb. Math., 192:4 (2001), 515–535 | DOI | DOI | MR | Zbl

[14] M. Ya. Mazalov, “On uniform approximation of harmonic functions”, St. Petersburg Math. J., 23:4 (2012), 731–759 | DOI | MR | Zbl

[15] R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56 | DOI | MR | Zbl

[16] J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Caldéron–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl

[17] M. Ya. Mazalov, “Uniform approximations by bianalytic functions on arbitrary compact subsets of $\mathbb C$”, Sb. Math., 195:5 (2004), 687–709 | DOI | DOI | MR | Zbl

[18] G. David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Math., 1465, Springer-Verlag, Berlin, 1991, x+107 pp. | DOI | MR | Zbl

[19] I. M. Gelfand, G. E. Schilow, Verallgemeinerte Funktionen (Distributionen), v. I, Hochschulbücher für Math., 47, Funktionen und das Rechnen mit ihnen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960, 364 pp. | MR | Zbl | Zbl